BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 20957255)

  • 1. Increasing the stability of an enzyme toward hostile organic solvents by directed evolution based on iterative saturation mutagenesis using the B-FIT method.
    Reetz MT; Soni P; Fernández L; Gumulya Y; Carballeira JD
    Chem Commun (Camb); 2010 Dec; 46(45):8657-8. PubMed ID: 20957255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes.
    Reetz MT; Carballeira JD
    Nat Protoc; 2007; 2(4):891-903. PubMed ID: 17446890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability.
    Reetz MT; Carballeira JD; Vogel A
    Angew Chem Int Ed Engl; 2006 Nov; 45(46):7745-51. PubMed ID: 17075931
    [No Abstract]   [Full Text] [Related]  

  • 4. Knowledge-guided laboratory evolution of protein thermolability.
    Reetz MT; Soni P; Fernández L
    Biotechnol Bioeng; 2009 Apr; 102(6):1712-7. PubMed ID: 19072845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of the organic solvent-stability of the LST-03 lipase by directed evolution.
    Kawata T; Ogino H
    Biotechnol Prog; 2009; 25(6):1605-11. PubMed ID: 19731302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of computational prescreening and experimental library construction can accelerate enzyme optimization by directed evolution.
    Funke SA; Otte N; Eggert T; Bocola M; Jaeger KE; Thiel W
    Protein Eng Des Sel; 2005 Nov; 18(11):509-14. PubMed ID: 16203748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved activity and thermostability of Bacillus pumilus lipase by directed evolution.
    Akbulut N; Tuzlakoğlu Öztürk M; Pijning T; İşsever Öztürk S; Gümüşel F
    J Biotechnol; 2013 Mar; 164(1):123-9. PubMed ID: 23313890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods.
    Reetz MT; Prasad S; Carballeira JD; Gumulya Y; Bocola M
    J Am Chem Soc; 2010 Jul; 132(26):9144-52. PubMed ID: 20536132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revisiting the lipase from Pseudomonas aeruginosa: directed evolution of substrate acceptance and enantioselectivity using iterative saturation mutagenesis.
    Prasad S; Bocola M; Reetz MT
    Chemphyschem; 2011 Jun; 12(8):1550-7. PubMed ID: 21472964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase.
    Acharya P; Rajakumara E; Sankaranarayanan R; Rao NM
    J Mol Biol; 2004 Aug; 341(5):1271-81. PubMed ID: 15321721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the protein stability landscape: Bacillus subtilis lipase A as a model for detergent tolerance.
    Fulton A; Frauenkron-Machedjou VJ; Skoczinski P; Wilhelm S; Zhu L; Schwaneberg U; Jaeger KE
    Chembiochem; 2015 Apr; 16(6):930-6. PubMed ID: 25773356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards understanding directed evolution: more than half of all amino acid positions contribute to ionic liquid resistance of Bacillus subtilis lipase A.
    Frauenkron-Machedjou VJ; Fulton A; Zhu L; Anker C; Bocola M; Jaeger KE; Schwaneberg U
    Chembiochem; 2015 Apr; 16(6):937-45. PubMed ID: 25786654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro evolution of a fungal laccase in high concentrations of organic cosolvents.
    Zumárraga M; Bulter T; Shleev S; Polaina J; Martínez-Arias A; Plou FJ; Ballesteros A; Alcalde M
    Chem Biol; 2007 Sep; 14(9):1052-64. PubMed ID: 17884637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Further improvement of phosphite dehydrogenase thermostability by saturation mutagenesis.
    McLachlan MJ; Johannes TW; Zhao H
    Biotechnol Bioeng; 2008 Feb; 99(2):268-74. PubMed ID: 17615560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directed evolution of Bacillus subtilis lipase A by use of enantiomeric phosphonate inhibitors: crystal structures and phage display selection.
    Dröge MJ; Boersma YL; van Pouderoyen G; Vrenken TE; Rüggeberg CJ; Reetz MT; Dijkstra BW; Quax WJ
    Chembiochem; 2006 Jan; 7(1):149-57. PubMed ID: 16342303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents.
    Moore JC; Arnold FH
    Nat Biotechnol; 1996 Apr; 14(4):458-67. PubMed ID: 9630920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability curves of laboratory evolved thermostable mutants of a Bacillus subtilis lipase.
    Kamal MZ; Ahmad S; Yedavalli P; Rao NM
    Biochim Biophys Acta; 2010 Sep; 1804(9):1850-6. PubMed ID: 20599630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved thermostability of lipase B from Candida antarctica by directed evolution and display on yeast surface.
    Peng XQ
    Appl Biochem Biotechnol; 2013 Jan; 169(2):351-8. PubMed ID: 23188656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Esterification activity and conformation studies of Burkholderia cepacia lipase in conventional organic solvents, ionic liquids and their co-solvent mixture media.
    Pan S; Liu X; Xie Y; Yi Y; Li C; Yan Y; Liu Y
    Bioresour Technol; 2010 Dec; 101(24):9822-4. PubMed ID: 20713309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression, purification and characterization of organic solvent stable lipase from Bacillus licheniformis RSP-09.
    Madan B; Mishra P
    J Mol Microbiol Biotechnol; 2009; 17(3):118-23. PubMed ID: 19270444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.