BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 20957355)

  • 1. Elimination of carbon catabolite repression in Klebsiella oxytoca for efficient 2,3-butanediol production from glucose-xylose mixtures.
    Ji XJ; Nie ZK; Huang H; Ren LJ; Peng C; Ouyang PK
    Appl Microbiol Biotechnol; 2011 Feb; 89(4):1119-25. PubMed ID: 20957355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous glucose and xylose utilization by an
    Kaplan NA; Islam KN; Kanis FC; Verderber JR; Wang X; Jones JA; Koffas MAG
    Appl Environ Microbiol; 2024 Feb; 90(2):e0216923. PubMed ID: 38289128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars.
    Li L; Li K; Wang Y; Chen C; Xu Y; Zhang L; Han B; Gao C; Tao F; Ma C; Xu P
    Metab Eng; 2015 Mar; 28():19-27. PubMed ID: 25499652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an industrial medium for economical 2,3-butanediol production through co-fermentation of glucose and xylose by Klebsiella oxytoca.
    Ji XJ; Huang H; Du J; Zhu JG; Ren LJ; Li S; Nie ZK
    Bioresour Technol; 2009 Nov; 100(21):5214-8. PubMed ID: 19527928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced production of (R,R)-2,3-butanediol by metabolically engineered Klebsiella oxytoca.
    Park JM; Rathnasingh C; Song H
    J Ind Microbiol Biotechnol; 2015 Oct; 42(10):1419-25. PubMed ID: 26275527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous carbon catabolite repression governs sugar and aromatic co-utilization in
    Shrestha S; Awasthi D; Chen Y; Gin J; Petzold CJ; Adams PD; Simmons BA; Singer SW
    Appl Environ Microbiol; 2023 Oct; 89(10):e0085223. PubMed ID: 37724856
    [No Abstract]   [Full Text] [Related]  

  • 7. Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene.
    Ji XJ; Huang H; Zhu JG; Ren LJ; Nie ZK; Du J; Li S
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1751-8. PubMed ID: 19756578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a semi-continuous two-stage simultaneous saccharification and fermentation process for enhanced 2,3-butanediol production by Klebsiella oxytoca.
    Moon SK; Kim DK; Park JM; Min J; Song H
    Lett Appl Microbiol; 2018 Apr; 66(4):300-305. PubMed ID: 29315769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation on xylose improves glucose-xylose co-utilization and ethanol production in a carbon catabolite repression (CCR) compromised ethanologenic strain.
    Dev C; Jilani SB; Yazdani SS
    Microb Cell Fact; 2022 Aug; 21(1):154. PubMed ID: 35933385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elimination of carbon catabolite repression in Clostridium acetobutylicum--a journey toward simultaneous use of xylose and glucose.
    Bruder M; Moo-Young M; Chung DA; Chou CP
    Appl Microbiol Biotechnol; 2015 Sep; 99(18):7579-88. PubMed ID: 25981995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of a novel Klebsiella oxytoca strain for enhanced 2,3-butanediol production.
    Kim DK; Rathnasingh C; Song H; Lee HJ; Seung D; Chang YK
    J Biosci Bioeng; 2013 Aug; 116(2):186-92. PubMed ID: 23643345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome profile of carbon catabolite repression in an efficient l-(+)-lactic acid-producing bacterium Enterococcus mundtii QU25 grown in media with combinations of cellobiose, xylose, and glucose.
    Shiwa Y; Fujiwara H; Numaguchi M; Abdel-Rahman MA; Nabeta K; Kanesaki Y; Tashiro Y; Zendo T; Tanaka N; Fujita N; Yoshikawa H; Sonomoto K; Shimizu-Kadota M
    PLoS One; 2020; 15(11):e0242070. PubMed ID: 33201910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli.
    Jarmander J; Hallström BM; Larsson G
    Biotechnol Bioeng; 2014 Jun; 111(6):1108-15. PubMed ID: 24382675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete genome sequence of Klebsiella oxytoca KCTC 1686, used in production of 2,3-butanediol.
    Shin SH; Kim S; Kim JY; Lee S; Um Y; Oh MK; Kim YR; Lee J; Yang KS
    J Bacteriol; 2012 May; 194(9):2371-2. PubMed ID: 22493189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of 2,3-butanediol by Klebsiella oxytoca from various sugars in microalgal hydrolysate.
    Kim YJ; Joo HW; Park J; Kim DK; Jeong KJ; Chang YK
    Biotechnol Prog; 2015; 31(6):1669-75. PubMed ID: 26400837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering E. coli for simultaneous glucose-xylose utilization during methyl ketone production.
    Wang X; Goh EB; Beller HR
    Microb Cell Fact; 2018 Jan; 17(1):12. PubMed ID: 29374483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose.
    Yu L; Xu M; Tang IC; Yang ST
    Biotechnol Bioeng; 2015 Oct; 112(10):2134-41. PubMed ID: 25894463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental evolution reveals an effective avenue to release catabolite repression via mutations in XylR.
    Sievert C; Nieves LM; Panyon LA; Loeffler T; Morris C; Cartwright RA; Wang X
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7349-7354. PubMed ID: 28655843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient 2,3-butanediol production from whey powder using metabolically engineered Klebsiella oxytoca.
    Meng W; Zhang Y; Cao M; Zhang W; Lü C; Yang C; Gao C; Xu P; Ma C
    Microb Cell Fact; 2020 Aug; 19(1):162. PubMed ID: 32778112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae.
    Kim SJ; Seo SO; Park YC; Jin YS; Seo JH
    J Biotechnol; 2014 Dec; 192 Pt B():376-82. PubMed ID: 24480571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.