BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 20957355)

  • 21. Engineering of Klebsiella oxytoca for production of 2,3-butanediol via simultaneous utilization of sugars from a Golenkinia sp. hydrolysate.
    Park JH; Choi MA; Kim YJ; Kim YC; Chang YK; Jeong KJ
    Bioresour Technol; 2017 Dec; 245(Pt B):1386-1392. PubMed ID: 28601394
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An effective and simplified fed-batch strategy for improved 2,3-butanediol production by Klebsiella oxytoca.
    Nie ZK; Ji XJ; Huang H; Du J; Li ZY; Qu L; Zhang Q; Ouyang PK
    Appl Biochem Biotechnol; 2011 Apr; 163(8):946-53. PubMed ID: 20938754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The mechanism of sugar-mediated catabolite repression of the propionate catabolic genes in Escherichia coli.
    Park JM; Vinuselvi P; Lee SK
    Gene; 2012 Aug; 504(1):116-21. PubMed ID: 22579471
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-scale reconstruction and in silico analysis of Klebsiella oxytoca for 2,3-butanediol production.
    Park JM; Song H; Lee HJ; Seung D
    Microb Cell Fact; 2013 Feb; 12():20. PubMed ID: 23432904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fermentation and evaluation of Klebsiella pneumoniae and K. oxytoca on the production of 2,3-butanediol.
    Cho JH; Rathnasingh C; Song H; Chung BW; Lee HJ; Seung D
    Bioprocess Biosyst Eng; 2012 Sep; 35(7):1081-8. PubMed ID: 22307808
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain.
    Li L; Li K; Wang K; Chen C; Gao C; Ma C; Xu P
    Bioresour Technol; 2014 Oct; 170():256-261. PubMed ID: 25151068
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced production of 2,3-butanediol in pyruvate decarboxylase-deficient Saccharomyces cerevisiae through optimizing ratio of glucose/galactose.
    Choi EJ; Kim JW; Kim SJ; Seo SO; Lane S; Park YC; Jin YS; Seo JH
    Biotechnol J; 2016 Nov; 11(11):1424-1432. PubMed ID: 27528190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elimination of carbon catabolite repression in Clostridium tyrobutyricum for enhanced butyric acid production from lignocellulosic hydrolysates.
    Fu H; Zhang H; Guo X; Yang L; Wang J
    Bioresour Technol; 2022 Aug; 357():127320. PubMed ID: 35589044
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complete genome sequence of Klebsiella oxytoca M1, isolated from Manripo area of South Korea.
    Shin SH; Roh H; Kim J; Cho S; Um Y; Lee J; Ryu YW; Chong H; Yang KS
    J Biotechnol; 2015 Mar; 198():1-2. PubMed ID: 25660421
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective production of 2,3-butanediol and acetoin by a newly isolated bacterium Klebsiella oxytoca M1.
    Cho S; Kim KD; Ahn JH; Lee J; Kim SW; Um Y
    Appl Biochem Biotechnol; 2013 Aug; 170(8):1922-33. PubMed ID: 23793864
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular modulation of pleiotropic regulator CcpA for glucose and xylose coutilization by solvent-producing Clostridium acetobutylicum.
    Wu Y; Yang Y; Ren C; Yang C; Yang S; Gu Y; Jiang W
    Metab Eng; 2015 Mar; 28():169-179. PubMed ID: 25637046
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2,3-butanediol production.
    Park JM; Song H; Lee HJ; Seung D
    J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1057-66. PubMed ID: 23779220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlling catabolite repression for isobutanol production using glucose and xylose by overexpressing the xylose regulator.
    Lee HJ; Kim B; Kim S; Cho DH; Jung H; Bhatia SK; Gurav R; Ahn J; Park JH; Choi KY; Yang YH
    J Biotechnol; 2022 Nov; 359():21-28. PubMed ID: 36152769
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of acetoin reductases involved in 2,3-butanediol pathway in Klebsiella oxytoca.
    Yang TH; Rathnasingh C; Lee HJ; Seung D
    J Biotechnol; 2014 Feb; 172():59-66. PubMed ID: 24389066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium.
    Jantama K; Polyiam P; Khunnonkwao P; Chan S; Sangproo M; Khor K; Jantama SS; Kanchanatawee S
    Metab Eng; 2015 Jul; 30():16-26. PubMed ID: 25895450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The XylR variant (R121C and P363S) releases arabinose-induced catabolite repression on xylose fermentation and enhances coutilization of lignocellulosic sugar mixtures.
    Martinez R; Flores AD; Dufault ME; Wang X
    Biotechnol Bioeng; 2019 Dec; 116(12):3476-3481. PubMed ID: 31429933
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum.
    Ren C; Gu Y; Hu S; Wu Y; Wang P; Yang Y; Yang C; Yang S; Jiang W
    Metab Eng; 2010 Sep; 12(5):446-54. PubMed ID: 20478391
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fed-batch fermentation for enhanced lactic acid production from glucose/xylose mixture without carbon catabolite repression.
    Abdel-Rahman MA; Xiao Y; Tashiro Y; Wang Y; Zendo T; Sakai K; Sonomoto K
    J Biosci Bioeng; 2015 Feb; 119(2):153-8. PubMed ID: 25280397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure D-2,3-butanediol production.
    Wang Q; Chen T; Zhao X; Chamu J
    Biotechnol Bioeng; 2012 Jul; 109(7):1610-21. PubMed ID: 22231522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing xylose catabolism genes for glucose and xylose co-utilization.
    Fu H; Yang ST; Wang M; Wang J; Tang IC
    Bioresour Technol; 2017 Jun; 234():389-396. PubMed ID: 28343058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.