These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 20957437)

  • 1. Designing of a Si-MEMS device with an integrated skeletal muscle cell-based bio-actuator.
    Fujita H; Van Dau T; Shimizu K; Hatsuda R; Sugiyama S; Nagamori E
    Biomed Microdevices; 2011 Feb; 13(1):123-9. PubMed ID: 20957437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel method for measuring active tension generation by C2C12 myotube using UV-crosslinked collagen film.
    Fujita H; Shimizu K; Nagamori E
    Biotechnol Bioeng; 2010 Jun; 106(3):482-9. PubMed ID: 20178119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of skeletal muscle cells on a Si-MEMS device and their generative force measurement.
    Shimizu K; Sasaki H; Hida H; Fujita H; Obinata K; Shikida M; Nagamori E
    Biomed Microdevices; 2010 Apr; 12(2):247-52. PubMed ID: 19943113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of myotube contraction using electrical pulse stimulation for bio-actuator.
    Yamasaki K; Hayashi H; Nishiyama K; Kobayashi H; Uto S; Kondo H; Hashimoto S; Fujisato T
    J Artif Organs; 2009; 12(2):131-7. PubMed ID: 19536631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically induced contraction of C2C12 myotubes cultured on a porous membrane-based substrate with muscle tissue-like stiffness.
    Kaji H; Ishibashi T; Nagamine K; Kanzaki M; Nishizawa M
    Biomaterials; 2010 Sep; 31(27):6981-6. PubMed ID: 20561677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple micropatterning method for enhancing fusion efficiency and responsiveness to electrical stimulation of C2C12 myotubes.
    Takayama Y; Wagatsuma A; Hoshino T; Mabuchi K
    Biotechnol Prog; 2015; 31(1):220-5. PubMed ID: 25311428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of functional myotubes with a Bio-MEMS device for non-invasive interrogation.
    Wilson K; Molnar P; Hickman J
    Lab Chip; 2007 Jul; 7(7):920-2. PubMed ID: 17594013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells.
    Sato M; Ito A; Kawabe Y; Nagamori E; Kamihira M
    J Biosci Bioeng; 2011 Sep; 112(3):273-8. PubMed ID: 21646045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell culture on microfabricated one-dimensional polymeric structures for bio-actuator and bio-bot applications.
    Anand SV; Yakut Ali M; Saif MT
    Lab Chip; 2015 Apr; 15(8):1879-88. PubMed ID: 25712193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micropatterning contractile C2C12 myotubes embedded in a fibrin gel.
    Nagamine K; Kawashima T; Ishibashi T; Kaji H; Kanzaki M; Nishizawa M
    Biotechnol Bioeng; 2010 Apr; 105(6):1161-7. PubMed ID: 20014142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of C2C12 Differentiation and Control of the Beating Dynamics of Contractile Cells for a Muscle-Driven Biosyncretic Crawler by Electrical Stimulation.
    Liu L; Zhang C; Wang W; Xi N; Wang Y
    Soft Robot; 2018 Dec; 5(6):748-760. PubMed ID: 30277855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterning the differentiation of C2C12 skeletal myoblasts.
    Bajaj P; Reddy B; Millet L; Wei C; Zorlutuna P; Bao G; Bashir R
    Integr Biol (Camb); 2011 Sep; 3(9):897-909. PubMed ID: 21842084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of scaffold-free contractile skeletal muscle tissue using magnetite-incorporated myogenic C2C12 cells.
    Fujita H; Shimizu K; Yamamoto Y; Ito A; Kamihira M; Nagamori E
    J Tissue Eng Regen Med; 2010 Aug; 4(6):437-43. PubMed ID: 20084621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporally controlled contraction of micropatterned skeletal muscle cells on a hydrogel sheet.
    Nagamine K; Kawashima T; Sekine S; Ido Y; Kanzaki M; Nishizawa M
    Lab Chip; 2011 Feb; 11(3):513-7. PubMed ID: 21116545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency-controlled wireless shape memory polymer microactuator for drug delivery application.
    Zainal MA; Ahmad A; Mohamed Ali MS
    Biomed Microdevices; 2017 Mar; 19(1):8. PubMed ID: 28124762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contractile C2C12 myotube model for studying exercise-inducible responses in skeletal muscle.
    Nedachi T; Fujita H; Kanzaki M
    Am J Physiol Endocrinol Metab; 2008 Nov; 295(5):E1191-204. PubMed ID: 18780777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localized electrical stimulation to C2C12 myotubes cultured on a porous membrane-based substrate.
    Ishibashi T; Hoshino Y; Kaji H; Kanzaki M; Sato M; Nishizawa M
    Biomed Microdevices; 2009 Apr; 11(2):413-9. PubMed ID: 18975093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerated myotube formation using bioprinting technology for biosensor applications.
    Cui X; Gao G; Qiu Y
    Biotechnol Lett; 2013 Mar; 35(3):315-21. PubMed ID: 23160742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MmNEU3 sialidase over-expression in C2C12 myoblasts delays differentiation and induces hypertrophic myotube formation.
    Papini N; Anastasia L; Tringali C; Dileo L; Carubelli I; Sampaolesi M; Monti E; Tettamanti G; Venerando B
    J Cell Biochem; 2012 Sep; 113(9):2967-78. PubMed ID: 22552967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micropatterning of single myotubes on a thermoresponsive culture surface using elastic stencil membranes for single-cell analysis.
    Shimizu K; Fujita H; Nagamori E
    J Biosci Bioeng; 2010 Feb; 109(2):174-8. PubMed ID: 20129103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.