These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 20957974)

  • 1. Brain computer interface (BCI) tools developed in a clinical environment.
    Anderson NR; DeVries EM
    Am J Electroneurodiagnostic Technol; 2010 Sep; 50(3):187-98. PubMed ID: 20957974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current trends in hardware and software for brain-computer interfaces (BCIs).
    Brunner P; Bianchi L; Guger C; Cincotti F; Schalk G
    J Neural Eng; 2011 Apr; 8(2):025001. PubMed ID: 21436536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bristle-sensors--low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications.
    Grozea C; Voinescu CD; Fazli S
    J Neural Eng; 2011 Apr; 8(2):025008. PubMed ID: 21436526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the use of brain-computer interfaces outside scientific laboratories toward an application in domotic environments.
    Babiloni F; Cincotti F; Marciani M; Salinari S; Astolfi L; Aloise F; De Vico Fallani F; Mattia D
    Int Rev Neurobiol; 2009; 86():133-46. PubMed ID: 19607996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of a telemonitoring system for the control of an EEG-based brain-computer interface.
    Müller GR; Neuper C; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2003 Mar; 11(1):54-9. PubMed ID: 12797726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Recent advances in rehabilitation technology: a review of the brain-computer interface].
    Santana D; Ramírez M; Ostrosky-Solís F
    Rev Neurol; 2004 Sep 1-15; 39(5):447-50. PubMed ID: 15378459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general.
    Zander TO; Kothe C
    J Neural Eng; 2011 Apr; 8(2):025005. PubMed ID: 21436512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-controlled interfaces: movement restoration with neural prosthetics.
    Schwartz AB; Cui XT; Weber DJ; Moran DW
    Neuron; 2006 Oct; 52(1):205-20. PubMed ID: 17015237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI).
    Weiskopf N; Mathiak K; Bock SW; Scharnowski F; Veit R; Grodd W; Goebel R; Birbaumer N
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):966-70. PubMed ID: 15188865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward smarter BCIs: extending BCIs through hybridization and intelligent control.
    Allison BZ; Leeb R; Brunner C; Müller-Putz GR; Bauernfeind G; Kelly JW; Neuper C
    J Neural Eng; 2012 Feb; 9(1):013001. PubMed ID: 22156029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BCI2000: a general-purpose brain-computer interface (BCI) system.
    Schalk G; McFarland DJ; Hinterberger T; Birbaumer N; Wolpaw JR
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):1034-43. PubMed ID: 15188875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair.
    Long J; Li Y; Wang H; Yu T; Pan J; Li F
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):720-9. PubMed ID: 22692936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new brain-computer interface design using fuzzy ARTMAP.
    Palaniappan R; Paramesran R; Nishida S; Saiwaki N
    IEEE Trans Neural Syst Rehabil Eng; 2002 Sep; 10(3):140-8. PubMed ID: 12503778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Context-aware brain-computer interfaces: exploring the information space of user, technical system and environment.
    Zander TO; Jatzev S
    J Neural Eng; 2012 Feb; 9(1):016003. PubMed ID: 22156069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performances evaluation and optimization of brain computer interface systems in a copy spelling task.
    Bianchi L; Quitadamo LR; Garreffa G; Cardarilli GC; Marciani MG
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):207-16. PubMed ID: 17601190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal mechanisms underlying control of a brain-computer interface.
    Hinterberger T; Veit R; Wilhelm B; Weiskopf N; Vatine JJ; Birbaumer N
    Eur J Neurosci; 2005 Jun; 21(11):3169-81. PubMed ID: 15978025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How many people are able to control a P300-based brain-computer interface (BCI)?
    Guger C; Daban S; Sellers E; Holzner C; Krausz G; Carabalona R; Gramatica F; Edlinger G
    Neurosci Lett; 2009 Oct; 462(1):94-8. PubMed ID: 19545601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning in closed-loop brain-machine interfaces: modeling and experimental validation.
    Héliot R; Ganguly K; Jimenez J; Carmena JM
    IEEE Trans Syst Man Cybern B Cybern; 2010 Oct; 40(5):1387-97. PubMed ID: 20007050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A general framework for brain-computer interface design.
    Mason SG; Birch GE
    IEEE Trans Neural Syst Rehabil Eng; 2003 Mar; 11(1):70-85. PubMed ID: 12797728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.