These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 20957984)

  • 1. Time-resolved three-dimensional molecular tracking in live cells.
    Wells NP; Lessard GA; Goodwin PM; Phipps ME; Cutler PJ; Lidke DS; Wilson BS; Werner JH
    Nano Lett; 2010 Nov; 10(11):4732-7. PubMed ID: 20957984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Note: Time-gated 3D single quantum dot tracking with simultaneous spinning disk imaging.
    DeVore MS; Stich DG; Keller AM; Cleyrat C; Phipps ME; Hollingsworth JA; Lidke DS; Wilson BS; Goodwin PM; Werner JH
    Rev Sci Instrum; 2015 Dec; 86(12):126102. PubMed ID: 26724083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into cell membrane microdomain organization from live cell single particle tracking of the IgE high affinity receptor FcϵRI of mast cells.
    Espinoza FA; Wester MJ; Oliver JM; Wilson BS; Andrews NL; Lidke DS; Steinberg SL
    Bull Math Biol; 2012 Aug; 74(8):1857-911. PubMed ID: 22733211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional tracking of single fluorescent particles with submillisecond temporal resolution.
    Juette MF; Bewersdorf J
    Nano Lett; 2010 Nov; 10(11):4657-63. PubMed ID: 20939601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single quantum dot tracking based on perceptual grouping using minimal paths in a spatiotemporal volume.
    Bonneau S; Dahan M; Cohen LD
    IEEE Trans Image Process; 2005 Sep; 14(9):1384-95. PubMed ID: 16190473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Going beyond 2D: Following membrane diffusion and topography in the IgE-Fc[Epsilon]RI system using 3-dimensional tracking microscopy.
    Wells NP; Lessard GA; Phipps ME; Goodwin PM; Lidke DS; Wilson BS; Werner JH
    Proc SPIE Int Soc Opt Eng; 2009 Feb; 7185():71850Z. PubMed ID: 25520545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells.
    Ram S; Prabhat P; Chao J; Ward ES; Ober RJ
    Biophys J; 2008 Dec; 95(12):6025-43. PubMed ID: 18835896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D orbital tracking in a modified two-photon microscope: an application to the tracking of intracellular vesicles.
    Anzalone A; Annibale P; Gratton E
    J Vis Exp; 2014 Oct; (92):e51794. PubMed ID: 25350070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional nanometry of vesicle transport in living cells using dual-focus imaging optics.
    Watanabe TM; Sato T; Gonda K; Higuchi H
    Biochem Biophys Res Commun; 2007 Jul; 359(1):1-7. PubMed ID: 17512495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved, confocal single-molecule tracking of individual organic dyes and fluorescent proteins in three dimensions.
    Han JJ; Kiss C; Bradbury AR; Werner JH
    ACS Nano; 2012 Oct; 6(10):8922-32. PubMed ID: 22957739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy.
    Singh AP; Krieger JW; Buchholz J; Charbon E; Langowski J; Wohland T
    Opt Express; 2013 Apr; 21(7):8652-68. PubMed ID: 23571955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confocal, three-dimensional tracking of individual quantum dots in high-background environments.
    Wells NP; Lessard GA; Werner JH
    Anal Chem; 2008 Dec; 80(24):9830-4. PubMed ID: 19072277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function.
    Thompson MA; Lew MD; Badieirostami M; Moerner WE
    Nano Lett; 2010 Jan; 10(1):211-8. PubMed ID: 20000821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging.
    Petryayeva E; Algar WR; Medintz IL
    Appl Spectrosc; 2013 Mar; 67(3):215-52. PubMed ID: 23452487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The microscope makers.
    Owens B
    Nature; 2017 Nov; 551(7682):659-662. PubMed ID: 29189791
    [No Abstract]   [Full Text] [Related]  

  • 16. Quantum dot photon statistics measured by three-dimensional particle tracking.
    McHale K; Berglund AJ; Mabuchi H
    Nano Lett; 2007 Nov; 7(11):3535-9. PubMed ID: 17949048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum Dots in an Amphiphilic Polyethyleneimine Derivative Platform for Cellular Labeling, Targeting, Gene Delivery, and Ratiometric Oxygen Sensing.
    Park J; Lee J; Kwag J; Baek Y; Kim B; Yoon CJ; Bok S; Cho SH; Kim KH; Ahn GO; Kim S
    ACS Nano; 2015 Jun; 9(6):6511-21. PubMed ID: 26057729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells.
    Tsuji T; Kawai-Noma S; Pack CG; Terajima H; Yajima J; Nishizaka T; Kinjo M; Taguchi H
    Biochem Biophys Res Commun; 2011 Feb; 405(4):638-43. PubMed ID: 21277285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand-bound quantum dot probes for studying the molecular scale dynamics of receptor endocytic trafficking in live cells.
    Rajan SS; Liu HY; Vu TQ
    ACS Nano; 2008 Jun; 2(6):1153-66. PubMed ID: 19206333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finding fluorescent needles in the cardiac haystack: tracking human mesenchymal stem cells labeled with quantum dots for quantitative in vivo three-dimensional fluorescence analysis.
    Rosen AB; Kelly DJ; Schuldt AJ; Lu J; Potapova IA; Doronin SV; Robichaud KJ; Robinson RB; Rosen MR; Brink PR; Gaudette GR; Cohen IS
    Stem Cells; 2007 Aug; 25(8):2128-38. PubMed ID: 17495112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.