These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 20958080)
1. Photothermal release of single-stranded DNA from the surface of gold nanoparticles through controlled denaturating and Au-S bond breaking. Poon L; Zandberg W; Hsiao D; Erno Z; Sen D; Gates BD; Branda NR ACS Nano; 2010 Nov; 4(11):6395-403. PubMed ID: 20958080 [TBL] [Abstract][Full Text] [Related]
2. Facile and controllable loading of single-stranded DNA on gold nanoparticles. Zu Y; Gao Z Anal Chem; 2009 Oct; 81(20):8523-8. PubMed ID: 19751052 [TBL] [Abstract][Full Text] [Related]
3. Use of the interparticle i-motif for the controlled assembly of gold nanoparticles. Wang W; Liu H; Liu D; Xu Y; Yang Y; Zhou D Langmuir; 2007 Nov; 23(24):11956-9. PubMed ID: 17949023 [TBL] [Abstract][Full Text] [Related]
4. Conformations of end-tethered DNA molecules on gold surfaces: influences of applied electric potential, electrolyte screening, and temperature. Kaiser W; Rant U J Am Chem Soc; 2010 Jun; 132(23):7935-45. PubMed ID: 20527934 [TBL] [Abstract][Full Text] [Related]
5. Controllable g5p-protein-directed aggregation of ssDNA-gold nanoparticles. Lee SK; Maye MM; Zhang YB; Gang O; van der Lelie D Langmuir; 2009 Jan; 25(2):657-60. PubMed ID: 19072316 [TBL] [Abstract][Full Text] [Related]
6. Rapid synthesis of DNA-functionalized gold nanoparticles in salt solution using mononucleotide-mediated conjugation. Zhao W; Lin L; Hsing IM Bioconjug Chem; 2009 Jun; 20(6):1218-22. PubMed ID: 19425573 [TBL] [Abstract][Full Text] [Related]
7. Dissociation of double-stranded DNA by small metal nanoparticles. Yang J; Pong BK; Lee JY; Too HP J Inorg Biochem; 2007 May; 101(5):824-30. PubMed ID: 17368547 [TBL] [Abstract][Full Text] [Related]
8. Stable gold nanoparticle conjugation to internal DNA positions: facile generation of discrete gold nanoparticle-DNA assemblies. Wen Y; McLaughlin CK; Lo PK; Yang H; Sleiman HF Bioconjug Chem; 2010 Aug; 21(8):1413-6. PubMed ID: 20666441 [TBL] [Abstract][Full Text] [Related]
9. Packed DNA denatures on gold nanoparticles. Peled D; Naaman R; Daube SS J Phys Chem B; 2010 Jul; 114(25):8581-4. PubMed ID: 20527823 [TBL] [Abstract][Full Text] [Related]
10. Combination of DNA ligase reaction and gold nanoparticle-quenched fluorescent oligonucleotides: a simple and efficient approach for fluorescent assaying of single-nucleotide polymorphisms. Wang H; Li J; Wang Y; Jin J; Yang R; Wang K; Tan W Anal Chem; 2010 Sep; 82(18):7684-90. PubMed ID: 20726510 [TBL] [Abstract][Full Text] [Related]
11. Chemical analysis of the superatom model for sulfur-stabilized gold nanoparticles. Reimers JR; Wang Y; Cankurtaran BO; Ford MJ J Am Chem Soc; 2010 Jun; 132(24):8378-84. PubMed ID: 20518461 [TBL] [Abstract][Full Text] [Related]
12. Melting temperature of surface-tethered DNA. Nasef H; Ozalp VC; Beni V; O'Sullivan CK Anal Biochem; 2010 Nov; 406(1):34-40. PubMed ID: 20615383 [TBL] [Abstract][Full Text] [Related]
13. Selective DNA-mediated assembly of gold nanoparticles on electroded substrates. Sapsford KE; Park D; Goldman ER; Foos EE; Trammell SA; Lowy DA; Ancona MG Langmuir; 2008 Sep; 24(18):10245-52. PubMed ID: 18702477 [TBL] [Abstract][Full Text] [Related]
14. Micro- and nanopatterning of functional organic monolayers on oxide-free silicon by laser-induced photothermal desorption. Scheres L; Klingebiel B; ter Maat J; Giesbers M; de Jong H; Hartmann N; Zuilhof H Small; 2010 Sep; 6(17):1918-26. PubMed ID: 20677184 [TBL] [Abstract][Full Text] [Related]
15. Contribution of nanoscale curvature to number density of immobilized DNA on gold nanoparticles. Kira A; Kim H; Yasuda K Langmuir; 2009 Feb; 25(3):1285-8. PubMed ID: 19132834 [TBL] [Abstract][Full Text] [Related]
16. Aggregation effects of gold nanoparticles for single-base mismatch detection in influenza A (H1N1) DNA sequences using fluorescence and Raman measurements. Ganbold EO; Kang T; Lee K; Lee SY; Joo SW Colloids Surf B Biointerfaces; 2012 May; 93():148-53. PubMed ID: 22261178 [TBL] [Abstract][Full Text] [Related]
17. A sensitive resonance light scattering spectrometry of trace Hg2+ with sulfur ion modified gold nanoparticles. Fan Y; Long YF; Li YF Anal Chim Acta; 2009 Oct; 653(2):207-11. PubMed ID: 19808115 [TBL] [Abstract][Full Text] [Related]
18. Selective decomposition of nucleic acids by laser irradiation on probe-tethered gold nanoparticles in solution. Takeda Y; Kondow T; Mafuné F Phys Chem Chem Phys; 2011 Jan; 13(2):586-92. PubMed ID: 21038058 [TBL] [Abstract][Full Text] [Related]
19. Surface effects in water-soluble shell-core hybrid gold nanoparticles in oligonucleotide single strand recognition for sequence-specific bioactivation. Zahavy E; Whitesell JK; Fox MA Langmuir; 2010 Nov; 26(21):16442-6. PubMed ID: 20677767 [TBL] [Abstract][Full Text] [Related]
20. Gold-silver and silver-silver nanoparticle constructs based on DNA hybridization of thiol- and amino-functionalized oligonucleotides. Steinbrück A; Csaki A; Ritter K; Leich M; Köhler JM; Fritzsche W J Biophotonics; 2008 May; 1(2):104-13. PubMed ID: 19343642 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]