These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 20959089)

  • 1. Role of the S4-S5 linker in CNG channel activation.
    Kusch J; Zimmer T; Holschuh J; Biskup C; Schulz E; Nache V; Benndorf K
    Biophys J; 2010 Oct; 99(8):2488-96. PubMed ID: 20959089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural changes during HCN channel gating defined by high affinity metal bridges.
    Kwan DC; Prole DL; Yellen G
    J Gen Physiol; 2012 Sep; 140(3):279-91. PubMed ID: 22930802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential regulation by cyclic nucleotides of the CNGA4 and CNGB1b subunits in olfactory cyclic nucleotide-gated channels.
    Nache V; Zimmer T; Wongsamitkul N; Schmauder R; Kusch J; Reinhardt L; Bönigk W; Seifert R; Biskup C; Schwede F; Benndorf K
    Sci Signal; 2012 Jul; 5(232):ra48. PubMed ID: 22786723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic profile of mutual subunit control in a heteromeric receptor.
    Schirmeyer J; Hummert S; Eick T; Schulz E; Schwabe T; Ehrlich G; Kukaj T; Wiegand M; Sattler C; Schmauder R; Zimmer T; Kosmalla N; Münch J; Bonus M; Gohlke H; Benndorf K
    Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34301910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salt bridges and gating in the COOH-terminal region of HCN2 and CNGA1 channels.
    Craven KB; Zagotta WN
    J Gen Physiol; 2004 Dec; 124(6):663-77. PubMed ID: 15572346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage-dependent gating of hyperpolarization-activated, cyclic nucleotide-gated pacemaker channels: molecular coupling between the S4-S5 and C-linkers.
    Decher N; Chen J; Sanguinetti MC
    J Biol Chem; 2004 Apr; 279(14):13859-65. PubMed ID: 14726518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The gating mechanism in cyclic nucleotide-gated ion channels.
    Mazzolini M; Arcangeletti M; Marchesi A; Napolitano LMR; Grosa D; Maity S; Anselmi C; Torre V
    Sci Rep; 2018 Jan; 8(1):45. PubMed ID: 29311674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The glutamic acid-rich protein is a gating inhibitor of cyclic nucleotide-gated channels.
    Michalakis S; Zong X; Becirovic E; Hammelmann V; Wein T; Wanner KT; Biel M
    J Neurosci; 2011 Jan; 31(1):133-41. PubMed ID: 21209198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deciphering the function of the CNGB1b subunit in olfactory CNG channels.
    Nache V; Wongsamitkul N; Kusch J; Zimmer T; Schwede F; Benndorf K
    Sci Rep; 2016 Jul; 6():29378. PubMed ID: 27405959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the SthK carboxy-terminal region reveals a gating mechanism for cyclic nucleotide-modulated ion channels.
    Kesters D; Brams M; Nys M; Wijckmans E; Spurny R; Voets T; Tytgat J; Kusch J; Ulens C
    PLoS One; 2015; 10(1):e0116369. PubMed ID: 25625648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of activation gating in olfactory-type cyclic nucleotide-gated (CNGA2) channels.
    Nache V; Kusch J; Biskup C; Schulz E; Zimmer T; Hagen V; Benndorf K
    Biophys J; 2008 Sep; 95(6):2750-8. PubMed ID: 18567637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Matrix metalloproteinase-9 and -2 enhance the ligand sensitivity of photoreceptor cyclic nucleotide-gated channels.
    Meighan PC; Meighan SE; Rich ED; Brown RL; Varnum MD
    Channels (Austin); 2012; 6(3):181-96. PubMed ID: 22699690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanisms of cyclic nucleotide-gated ion channel gating.
    Wang Z; Jiang Y; Lu L; Huang R; Hou Q; Shi F
    J Genet Genomics; 2007 Jun; 34(6):477-85. PubMed ID: 17601606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CryoEM structure of a prokaryotic cyclic nucleotide-gated ion channel.
    James ZM; Borst AJ; Haitin Y; Frenz B; DiMaio F; Zagotta WN; Veesler D
    Proc Natl Acad Sci U S A; 2017 Apr; 114(17):4430-4435. PubMed ID: 28396445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two structural components in CNGA3 support regulation of cone CNG channels by phosphoinositides.
    Dai G; Peng C; Liu C; Varnum MD
    J Gen Physiol; 2013 Apr; 141(4):413-30. PubMed ID: 23530136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The concerted contribution of the S4-S5 linker and the S6 segment to the modulation of a Kv channel by 1-alkanols.
    Bhattacharji A; Kaplan B; Harris T; Qu X; Germann MW; Covarrubias M
    Mol Pharmacol; 2006 Nov; 70(5):1542-54. PubMed ID: 16887933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the molecular mechanism for hyperpolarization-dependent activation of HCN channels.
    Flynn GE; Zagotta WN
    Proc Natl Acad Sci U S A; 2018 Aug; 115(34):E8086-E8095. PubMed ID: 30076228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural mechanisms of gating and selectivity of human rod CNGA1 channel.
    Xue J; Han Y; Zeng W; Wang Y; Jiang Y
    Neuron; 2021 Apr; 109(8):1302-1313.e4. PubMed ID: 33651975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The analysis of desensitizing CNGA1 channels reveals molecular interactions essential for normal gating.
    Mazzolini M; Anselmi C; Torre V
    J Gen Physiol; 2009 Apr; 133(4):375-86. PubMed ID: 19289572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interplay between PIP3 and calmodulin regulation of olfactory cyclic nucleotide-gated channels.
    Brady JD; Rich ED; Martens JR; Karpen JW; Varnum MD; Brown RL
    Proc Natl Acad Sci U S A; 2006 Oct; 103(42):15635-40. PubMed ID: 17032767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.