These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 20959287)

  • 1. MethylViewer: computational analysis and editing for bisulfite sequencing and methyltransferase accessibility protocol for individual templates (MAPit) projects.
    Pardo CE; Carr IM; Hoffman CJ; Darst RP; Markham AF; Bonthron DT; Kladde MP
    Nucleic Acids Res; 2011 Jan; 39(1):e5. PubMed ID: 20959287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous single-molecule mapping of protein-DNA interactions and DNA methylation by MAPit.
    Pardo CE; Darst RP; Nabilsi NH; Delmas AL; Kladde MP
    Curr Protoc Mol Biol; 2011 Jul; Chapter 21():Unit 21.22. PubMed ID: 21732317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA methyltransferase probing of chromatin structure within populations and on single molecules.
    Pardo C; Hoose SA; Pondugula S; Kladde MP
    Methods Mol Biol; 2009; 523():41-65. PubMed ID: 19381922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous single-molecule detection of endogenous C-5 DNA methylation and chromatin accessibility using MAPit.
    Darst RP; Pardo CE; Pondugula S; Gangaraju VK; Nabilsi NH; Bartholomew B; Kladde MP
    Methods Mol Biol; 2012; 833():125-41. PubMed ID: 22183592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA methyltransferase accessibility protocol for individual templates by deep sequencing.
    Darst RP; Nabilsi NH; Pardo CE; Riva A; Kladde MP
    Methods Enzymol; 2012; 513():185-204. PubMed ID: 22929770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated DNA methylation and chromatin structural analysis at single-molecule resolution.
    Pardo CE; Nabilsi NH; Darst RP; Kladde MP
    Methods Mol Biol; 2015; 1288():123-41. PubMed ID: 25827879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microsoft Word macro for analysis of cytosine methylation by the bisulfite deamination reaction.
    Singal R; Grimes SR
    Biotechniques; 2001 Jan; 30(1):116-20. PubMed ID: 11196301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of bisulfite sequencing data from plant DNA using CyMATE.
    Foerster AM; Hetzl J; Müllner C; Mittelsten Scheid O
    Methods Mol Biol; 2010; 631():13-22. PubMed ID: 20204864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technical adequacy of bisulfite sequencing and pyrosequencing for detection of mitochondrial DNA methylation: Sources and avoidance of false-positive detection.
    Owa C; Poulin M; Yan L; Shioda T
    PLoS One; 2018; 13(2):e0192722. PubMed ID: 29420656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BisAMP: A web-based pipeline for targeted RNA cytosine-5 methylation analysis.
    Bormann F; Tuorto F; Cirzi C; Lyko F; Legrand C
    Methods; 2019 Mar; 156():121-127. PubMed ID: 30366099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Cytosine methylation in ancient DNA from five native american populations using bisulfite sequencing.
    Smith RW; Monroe C; Bolnick DA
    PLoS One; 2015; 10(5):e0125344. PubMed ID: 26016479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resolution of the DNA methylation state of single CpG dyads using in silico strand annealing and WGBS data.
    Xu C; Corces VG
    Nat Protoc; 2019 Jan; 14(1):202-216. PubMed ID: 30542058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted bisulfite sequencing by solution hybrid selection and massively parallel sequencing.
    Lee EJ; Pei L; Srivastava G; Joshi T; Kushwaha G; Choi JH; Robertson KD; Wang X; Colbourne JK; Zhang L; Schroth GP; Xu D; Zhang K; Shi H
    Nucleic Acids Res; 2011 Oct; 39(19):e127. PubMed ID: 21785137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced reduced representation bisulfite sequencing for assessment of DNA methylation at base pair resolution.
    Garrett-Bakelman FE; Sheridan CK; Kacmarczyk TJ; Ishii J; Betel D; Alonso A; Mason CE; Figueroa ME; Melnick AM
    J Vis Exp; 2015 Feb; (96):e52246. PubMed ID: 25742437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA methylation analysis by bisulfite conversion, cloning, and sequencing of individual clones.
    Zhang Y; Rohde C; Tierling S; Stamerjohanns H; Reinhardt R; Walter J; Jeltsch A
    Methods Mol Biol; 2009; 507():177-87. PubMed ID: 18987815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-speed conversion of cytosine to uracil in bisulfite genomic sequencing analysis of DNA methylation.
    Shiraishi M; Hayatsu H
    DNA Res; 2004 Dec; 11(6):409-15. PubMed ID: 15871463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approaches for the Analysis and Interpretation of Whole-Genome Bisulfite Sequencing Data.
    Stuart T; Buckberry S; Nguyen TV; Lister R
    Methods Mol Biol; 2024; 2842():391-403. PubMed ID: 39012607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double restriction-enzyme digestion improves the coverage and accuracy of genome-wide CpG methylation profiling by reduced representation bisulfite sequencing.
    Wang J; Xia Y; Li L; Gong D; Yao Y; Luo H; Lu H; Yi N; Wu H; Zhang X; Tao Q; Gao F
    BMC Genomics; 2013 Jan; 14():11. PubMed ID: 23324053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA methylation analysis by pyrosequencing.
    Tost J; Gut IG
    Nat Protoc; 2007; 2(9):2265-75. PubMed ID: 17853883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CAME: identification of chromatin accessibility from nucleosome occupancy and methylome sequencing.
    Piao Y; Lee SK; Lee EJ; Robertson KD; Shi H; Ryu KH; Choi JH
    Bioinformatics; 2017 Apr; 33(8):1139-1146. PubMed ID: 28035030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.