These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 20959383)

  • 1. Interactional and functional centrality in transcriptional co-expression networks.
    Prifti E; Zucker JD; Clément K; Henegar C
    Bioinformatics; 2010 Dec; 26(24):3083-9. PubMed ID: 20959383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FunNet: an integrative tool for exploring transcriptional interactions.
    Prifti E; Zucker JD; Clement K; Henegar C
    Bioinformatics; 2008 Nov; 24(22):2636-8. PubMed ID: 18799481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ranking of network elements based on functional substructures.
    Koschützki D; Schwöbbermeyer H; Schreiber F
    J Theor Biol; 2007 Oct; 248(3):471-9. PubMed ID: 17644116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated analyses to reconstruct microRNA-mediated regulatory networks in mouse liver using high-throughput profiling.
    Hsu SD; Huang HY; Chou CH; Sun YM; Hsu MT; Tsou AP
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S12. PubMed ID: 25707768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bottlenecks and hubs in inferred networks are important for virulence in Salmonella typhimurium.
    McDermott JE; Taylor RC; Yoon H; Heffron F
    J Comput Biol; 2009 Feb; 16(2):169-80. PubMed ID: 19178137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional and protein‑protein interaction network analysis of colorectal cancer induced by ulcerative colitis.
    Dai Y; Jiang JB; Wang YL; Jin ZT; Hu SY
    Mol Med Rep; 2015 Oct; 12(4):4947-58. PubMed ID: 26239378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The condition-dependent transcriptional network in Escherichia coli.
    Lemmens K; De Bie T; Dhollander T; Monsieurs P; De Moor B; Collado-Vides J; Engelen K; Marchal K
    Ann N Y Acad Sci; 2009 Mar; 1158():29-35. PubMed ID: 19348629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional network inference from functional similarity and expression data: a global supervised approach.
    Ambroise J; Robert A; Macq B; Gala JL
    Stat Appl Genet Mol Biol; 2012 Jan; 11(1):Article 2. PubMed ID: 22499684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using coalitional games on biological networks to measure centrality and power of genes.
    Moretti S; Fragnelli V; Patrone F; Bonassi S
    Bioinformatics; 2010 Nov; 26(21):2721-30. PubMed ID: 20817743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel meta-analysis approach of cancer transcriptomes reveals prevailing transcriptional networks in cancer cells.
    Niida A; Imoto S; Nagasaki M; Yamaguchi R; Miyano S
    Genome Inform; 2010 Jan; 22():121-31. PubMed ID: 20238423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variability of Betweenness Centrality and Its Effect on Identifying Essential Genes.
    Durón C; Pan Y; Gutmann DH; Hardin J; Radunskaya A
    Bull Math Biol; 2019 Sep; 81(9):3655-3673. PubMed ID: 30350013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identify condition-specific gene co-expression networks.
    Kalluru V; Machiraju R; Huang K
    Int J Comput Biol Drug Des; 2013; 6(1-2):50-9. PubMed ID: 23428473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of hub genes and pathways associated with retinoblastoma based on co-expression network analysis.
    Wang QL; Chen X; Zhang MH; Shen QH; Qin ZM
    Genet Mol Res; 2015 Dec; 14(4):16151-61. PubMed ID: 26662407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing biological relevance of a weighted gene co-expression network for functional module identification.
    Prom-On S; Chanthaphan A; Chan JH; Meechai A
    J Bioinform Comput Biol; 2011 Feb; 9(1):111-29. PubMed ID: 21328709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EpistasisRank and EpistasisKatz: interaction network centrality methods that integrate prior knowledge networks.
    Parvandeh S; McKinney BA
    Bioinformatics; 2019 Jul; 35(13):2329-2331. PubMed ID: 30481259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of essential proteins based on overlapping essential modules.
    Zhao B; Wang J; Li M; Wu FX; Pan Y
    IEEE Trans Nanobioscience; 2014 Dec; 13(4):415-24. PubMed ID: 25122840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating transcriptional and protein interaction networks to prioritize condition-specific master regulators.
    Padi M; Quackenbush J
    BMC Syst Biol; 2015 Nov; 9():80. PubMed ID: 26576632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-species common regulatory network inference without requirement for prior gene affiliation.
    Gholami AM; Fellenberg K
    Bioinformatics; 2010 Apr; 26(8):1082-90. PubMed ID: 20200011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse.
    Liu ZP; Wu C; Miao H; Wu H
    Database (Oxford); 2015; 2015():. PubMed ID: 26424082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.