These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 20959819)

  • 1. Impact of translational error-induced and error-free misfolding on the rate of protein evolution.
    Yang JR; Zhuang SM; Zhang J
    Mol Syst Biol; 2010 Oct; 6():421. PubMed ID: 20959819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein misinteraction avoidance causes highly expressed proteins to evolve slowly.
    Yang JR; Liao BY; Zhuang SM; Zhang J
    Proc Natl Acad Sci U S A; 2012 Apr; 109(14):E831-40. PubMed ID: 22416125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why highly expressed proteins evolve slowly.
    Drummond DA; Bloom JD; Adami C; Wilke CO; Arnold FH
    Proc Natl Acad Sci U S A; 2005 Oct; 102(40):14338-43. PubMed ID: 16176987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution.
    Drummond DA; Wilke CO
    Cell; 2008 Jul; 134(2):341-52. PubMed ID: 18662548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Overexpression Experiment Does Not Support the Hypothesis That Avoidance of Toxicity Determines the Rate of Protein Evolution.
    Biesiadecka MK; Sliwa P; Tomala K; Korona R
    Genome Biol Evol; 2020 May; 12(5):589-596. PubMed ID: 32259256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Abundant Proteins Are Highly Thermostable.
    Luzuriaga-Neira AR; Ritchie AM; Payne BL; Carrillo-Parramon O; Liberles DA; Alvarez-Ponce D
    Genome Biol Evol; 2023 Jul; 15(7):. PubMed ID: 37399326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translationally optimal codons associate with structurally sensitive sites in proteins.
    Zhou T; Weems M; Wilke CO
    Mol Biol Evol; 2009 Jul; 26(7):1571-80. PubMed ID: 19349643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why proteins evolve at different rates: the functional hypothesis versus the mistranslation-induced protein misfolding hypothesis.
    Park D; Choi SS
    FEBS Lett; 2009 Apr; 583(7):1053-9. PubMed ID: 19254718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A protein evolution model with independent sites that reproduces site-specific amino acid distributions from the Protein Data Bank.
    Bastolla U; Porto M; Roman HE; Vendruscolo M
    BMC Evol Biol; 2006 May; 6():43. PubMed ID: 16737532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular Domains of Transmembrane Proteins Defy the Expression Level-Evolutionary Rate Anticorrelation.
    Sarkar C; Alvarez-Ponce D
    Genome Biol Evol; 2022 Jan; 14(1):. PubMed ID: 34665250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using yeasts for the studies of nonfunctional factors in protein evolution.
    Potera K; Tomala K
    Yeast; 2024 Sep; 41(9):529-536. PubMed ID: 38895906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secreted Proteins Defy the Expression Level-Evolutionary Rate Anticorrelation.
    Feyertag F; Berninsone PM; Alvarez-Ponce D
    Mol Biol Evol; 2017 Mar; 34(3):692-706. PubMed ID: 28007979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are residues in a protein folding nucleus evolutionarily conserved?
    Tseng YY; Liang J
    J Mol Biol; 2004 Jan; 335(4):869-80. PubMed ID: 14698285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary systems biology of amino acid biosynthetic cost in yeast.
    Barton MD; Delneri D; Oliver SG; Rattray M; Bergman CM
    PLoS One; 2010 Aug; 5(8):e11935. PubMed ID: 20808905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Misfolded proteins impose a dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast.
    Geiler-Samerotte KA; Dion MF; Budnik BA; Wang SM; Hartl DL; Drummond DA
    Proc Natl Acad Sci U S A; 2011 Jan; 108(2):680-5. PubMed ID: 21187411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proportion of solvent-exposed amino acids in a protein and rate of protein evolution.
    Lin YS; Hsu WL; Hwang JK; Li WH
    Mol Biol Evol; 2007 Apr; 24(4):1005-11. PubMed ID: 17264066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Point mutations in protein globular domains: contributions from function, stability and misfolding.
    Sánchez IE; Tejero J; Gómez-Moreno C; Medina M; Serrano L
    J Mol Biol; 2006 Oct; 363(2):422-32. PubMed ID: 16978645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How expression level influences the disorderness of proteins.
    Singh GP; Dash D
    Biochem Biophys Res Commun; 2008 Jul; 371(3):401-4. PubMed ID: 18439906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of the genetic code: partial optimization of a random code for robustness to translation error in a rugged fitness landscape.
    Novozhilov AS; Wolf YI; Koonin EV
    Biol Direct; 2007 Oct; 2():24. PubMed ID: 17956616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparable contributions of structural-functional constraints and expression level to the rate of protein sequence evolution.
    Wolf MY; Wolf YI; Koonin EV
    Biol Direct; 2008 Oct; 3():40. PubMed ID: 18840284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.