BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 20959933)

  • 1. In situ growth of gold nanoparticles on latent fingerprints-from forensic applications to inkjet printed nanoparticle patterns.
    Hussain I; Hussain SZ; Habib-ur-Rehman ; Ihsan A; Rehman A; Khalid ZM; Brust M; Cooper AI
    Nanoscale; 2010 Dec; 2(12):2575-8. PubMed ID: 20959933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One step to detect the latent fingermarks with gold nanoparticles.
    Gao D; Li F; Song J; Xu X; Zhang Q; Niu L
    Talanta; 2009 Dec; 80(2):479-83. PubMed ID: 19836507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biologically friendly single step method for gold nanoparticle formation.
    Sharma D
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):330-7. PubMed ID: 21459561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single step, pH induced gold nanoparticle chain formation in lecithin/water system.
    Sharma D
    Colloids Surf B Biointerfaces; 2013 Jul; 107():262-6. PubMed ID: 23415484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution direct patterning of gold nanoparticles by the microfluidic molding process.
    Demko MT; Cheng JC; Pisano AP
    Langmuir; 2010 Nov; 26(22):16710-4. PubMed ID: 20886896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of latent fingermarks on non-porous surfaces using anti-L-amino acid antibodies conjugated to gold nanoparticles.
    Spindler X; Hofstetter O; McDonagh AM; Roux C; Lennard C
    Chem Commun (Camb); 2011 May; 47(19):5602-4. PubMed ID: 21455541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunological multimetal deposition for rapid visualization of sweat fingerprints.
    He Y; Xu L; Zhu Y; Wei Q; Zhang M; Su B
    Angew Chem Int Ed Engl; 2014 Nov; 53(46):12609-12. PubMed ID: 25080060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular imaging of banknote and questioned document using solvent-free gold nanoparticle-assisted laser desorption/ionization imaging mass spectrometry.
    Tang HW; Wong MY; Chan SL; Che CM; Ng KM
    Anal Chem; 2011 Jan; 83(1):453-8. PubMed ID: 21117626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold-nanoparticle-stabilized pluronic micelles exhibiting glutathione triggered morphology evolution properties.
    Xu JP; Yang X; Lv LP; Wei Y; Xu FM; Ji J
    Langmuir; 2010 Nov; 26(22):16841-7. PubMed ID: 20942438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands.
    Liu X; Atwater M; Wang J; Huo Q
    Colloids Surf B Biointerfaces; 2007 Jul; 58(1):3-7. PubMed ID: 16997536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous synthesis and assembly of gold nanoparticles in cuttlebone-derived organic matrix: a "green" pathway for gold nanocomposite.
    Jia X; Qian W
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4370-6. PubMed ID: 19049027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis.
    Huang J; Zhang L; Chen B; Ji N; Chen F; Zhang Y; Zhang Z
    Nanoscale; 2010 Dec; 2(12):2733-8. PubMed ID: 20936236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible self-assembly of carboxylated peptide-functionalized gold nanoparticles driven by metal-ion coordination.
    Si S; Raula M; Paira TK; Mandal TK
    Chemphyschem; 2008 Aug; 9(11):1578-84. PubMed ID: 18615416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape-controlled synthesis of NIR absorbing branched gold nanoparticles and morphology stabilization with alkanethiols.
    Van de Broek B; Frederix F; Bonroy K; Jans H; Jans K; Borghs G; Maes G
    Nanotechnology; 2011 Jan; 22(1):015601. PubMed ID: 21135459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hematite spindles with optical functionalities: growth of gold nanoshells and assembly of gold nanorods.
    Spuch-Calvar M; Pérez-Juste J; Liz-Marzán LM
    J Colloid Interface Sci; 2007 Jun; 310(1):297-301. PubMed ID: 17306291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and use of self-assembled rhamnolipid microtubules as templates for gold nanoparticles assembly to form gold microstructures.
    Rehman A; Raza ZA; Saif-ur-Rehman ; Khalid ZM; Subramani C; Rotello VM; Hussain I
    J Colloid Interface Sci; 2010 Jul; 347(2):332-5. PubMed ID: 20462593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective colorimetric sensing of geometrical isomers of dicarboxylates in water by using functionalized gold nanoparticles.
    Chatterjee A; Oh DJ; Kim KM; Youk KS; Ahn KH
    Chem Asian J; 2008 Nov; 3(11):1962-7. PubMed ID: 18720528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser-ablation-induced synthesis of SiO2-capped noble metal nanoparticles in a single step.
    Jiménez E; Abderrafi K; Abargues R; Valdés JL; Martínez-Pastor JP
    Langmuir; 2010 May; 26(10):7458-63. PubMed ID: 20187628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of the interparticle i-motif for the controlled assembly of gold nanoparticles.
    Wang W; Liu H; Liu D; Xu Y; Yang Y; Zhou D
    Langmuir; 2007 Nov; 23(24):11956-9. PubMed ID: 17949023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.