BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 20960335)

  • 1. Intra-operative MRI at 3.0 Tesla: a moveable magnet.
    Lang MJ; Greer AD; Sutherland GR
    Acta Neurochir Suppl; 2011; 109():151-6. PubMed ID: 20960335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A moveable 3-Tesla intraoperative magnetic resonance imaging system.
    Lang MJ; Kelly JJ; Sutherland GR
    Neurosurgery; 2011 Mar; 68(1 Suppl Operative):168-79. PubMed ID: 21150476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraoperative magnetic resonance imaging at 3-T using a dual independent operating room-magnetic resonance imaging suite: development, feasibility, safety, and preliminary experience.
    Jankovski A; Francotte F; Vaz G; Fomekong E; Duprez T; Van Boven M; Docquier MA; Hermoye L; Cosnard G; Raftopoulos C
    Neurosurgery; 2008 Sep; 63(3):412-24; discussion 424-6. PubMed ID: 18812952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intra-operative 3.0 T magnetic resonance imaging using a dual-independent room: long-term evaluation of time-cost, problems, and learning-curve effect.
    Martin XP; Vaz G; Fomekong E; Cosnard G; Raftopoulos C
    Acta Neurochir Suppl; 2011; 109():139-44. PubMed ID: 20960333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intra-operative magnetic resonance imaging in neurosurgery.
    Albayrak B; Samdani AF; Black PM
    Acta Neurochir (Wien); 2004 Jun; 146(6):543-56; discussion 557. PubMed ID: 15168222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Usefulness of intraoperative ultra low-field magnetic resonance imaging in glioma surgery.
    Senft C; Seifert V; Hermann E; Franz K; Gasser T
    Neurosurgery; 2008 Oct; 63(4 Suppl 2):257-66; discussion 266-7. PubMed ID: 18981831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementation and preliminary clinical experience with the use of ceiling mounted mobile high field intraoperative magnetic resonance imaging between two operating rooms.
    Chicoine MR; Lim CC; Evans JA; Singla A; Zipfel GJ; Rich KM; Dowling JL; Leonard JR; Smyth MD; Santiago P; Leuthardt EC; Limbrick DD; Dacey RG
    Acta Neurochir Suppl; 2011; 109():97-102. PubMed ID: 20960327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraoperative neurophysiological monitoring in an open low-field magnetic resonance imaging system: clinical experience and technical considerations.
    Szelényi A; Gasser T; Seifert V
    Neurosurgery; 2008 Oct; 63(4 Suppl 2):268-75; discussion 275-6. PubMed ID: 18981832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy, efficacy, and clinical applications of the Radionics Operating Arm System.
    Eljamel MS
    Comput Aided Surg; 1997; 2(5):292-7. PubMed ID: 9484590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraoperative portable 0.12-tesla MRI in pediatric neurosurgery.
    Roth J; Beni Adani L; Biyani N; Constantini S
    Pediatr Neurosurg; 2006; 42(2):74-80. PubMed ID: 16465075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated intra-operative room design.
    Ng I
    Acta Neurochir Suppl; 2011; 109():199-205. PubMed ID: 20960343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraoperative MRI for stereotactic biopsy.
    Schulder M; Spiro D
    Acta Neurochir Suppl; 2011; 109():81-7. PubMed ID: 20960325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MRI-guided brain biopsies using a 0.2 Tesla open magnet.
    Tronnier V; Staubert A; Wirtz R; Knauth M; Bonsanto M; Kunze S
    Minim Invasive Neurosurg; 1999 Sep; 42(3):118-22. PubMed ID: 10535293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre- and postoperative MR brain imaging with automatic planning and scanning software in tumor patients: an intraindividual comparative study at 3 Tesla.
    Nelles M; Gieseke J; Urbach H; Semrau R; Bystrov D; Schild HH; Willinek WA
    J Magn Reson Imaging; 2009 Sep; 30(3):672-7. PubMed ID: 19711417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereotactic brain biopsy with a low-field intraoperative magnetic resonance imager.
    Quinn J; Spiro D; Schulder M
    Neurosurgery; 2011 Mar; 68(1 Suppl Operative):217-24; discussion 224. PubMed ID: 21206306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatile intraoperative MRI in neurosurgery and radiology.
    Yrjänä SK; Katisko JP; Ojala RO; Tervonen O; Schiffbauer H; Koivukangas J
    Acta Neurochir (Wien); 2002 Mar; 144(3):271-8; discussion 278. PubMed ID: 11956940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lows and highs: 15 years of development in intraoperative magnetic resonance imaging.
    Schmidt T; König R; Hlavac M; Antoniadis G; Wirtz CR
    Acta Neurochir Suppl; 2011; 109():17-20. PubMed ID: 20960315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pre-operative planning and intra-operative guidance in modern neurosurgery: a review of 300 cases.
    Wadley J; Dorward N; Kitchen N; Thomas D
    Ann R Coll Surg Engl; 1999 Jul; 81(4):217-25. PubMed ID: 10615186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional magnetic resonance imaging and diffusion tensor tractography incorporated into an intraoperative 3-dimensional ultrasound-based neuronavigation system: impact on therapeutic strategies, extent of resection, and clinical outcome.
    Berntsen EM; Gulati S; Solheim O; Kvistad KA; Torp SH; Selbekk T; Unsgård G; Håberg AK
    Neurosurgery; 2010 Aug; 67(2):251-64. PubMed ID: 20644410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intra-operative robotics: NeuroArm.
    Lang MJ; Greer AD; Sutherland GR
    Acta Neurochir Suppl; 2011; 109():231-6. PubMed ID: 20960348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.