These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A method of layer-by-layer gold nanoparticle hybridization in a quartz crystal microbalance DNA sensing system used to detect dengue virus. Chen SH; Chuang YC; Lu YC; Lin HC; Yang YL; Lin CS Nanotechnology; 2009 May; 20(21):215501. PubMed ID: 19423930 [TBL] [Abstract][Full Text] [Related]
5. A role for nanoparticle surface reactivity in facilitating pulmonary toxicity and development of a base set of hazard assays as a component of nanoparticle risk management. Warheit DB; Reed KL; Sayes CM Inhal Toxicol; 2009 Jul; 21 Suppl 1():61-7. PubMed ID: 19558235 [TBL] [Abstract][Full Text] [Related]
6. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Liu X; Atwater M; Wang J; Huo Q Colloids Surf B Biointerfaces; 2007 Jul; 58(1):3-7. PubMed ID: 16997536 [TBL] [Abstract][Full Text] [Related]
7. A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Mao X; Yang L; Su XL; Li Y Biosens Bioelectron; 2006 Jan; 21(7):1178-85. PubMed ID: 15951163 [TBL] [Abstract][Full Text] [Related]
8. Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: toxicity is not dependent upon particle size but on surface characteristics. Warheit DB; Webb TR; Colvin VL; Reed KL; Sayes CM Toxicol Sci; 2007 Jan; 95(1):270-80. PubMed ID: 17030555 [TBL] [Abstract][Full Text] [Related]
9. Study of the evaporation of colloidal suspension droplets with the quartz crystal microbalance. Zhuang H; Lu P; Lim SP; Lee HP Langmuir; 2008 Aug; 24(15):8373-8. PubMed ID: 18616226 [TBL] [Abstract][Full Text] [Related]
10. Quartz crystal microbalance as a sensing active element for rupture scanning within frequency band. Dultsev FN; Kolosovsky EA Anal Chim Acta; 2011 Feb; 687(1):75-81. PubMed ID: 21241849 [TBL] [Abstract][Full Text] [Related]
11. Low-temperature growth of silicon nanotubes and nanowires on amorphous substrates. Mbenkum BN; Schneider AS; Schütz G; Xu C; Richter G; van Aken PA; Majer G; Spatz JP ACS Nano; 2010 Apr; 4(4):1805-12. PubMed ID: 20218667 [TBL] [Abstract][Full Text] [Related]
12. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates. Chiu CS; Gwo S Anal Chem; 2008 May; 80(9):3318-26. PubMed ID: 18363384 [TBL] [Abstract][Full Text] [Related]
13. Simple, readily controllable palladium nanoparticle formation on surface-assembled viral nanotemplates. Manocchi AK; Horelik NE; Lee B; Yi H Langmuir; 2010 Mar; 26(5):3670-7. PubMed ID: 19919039 [TBL] [Abstract][Full Text] [Related]
14. Bovine serum albumin adsorption on nano-rough platinum surfaces studied by QCM-D. Dolatshahi-Pirouz A; Rechendorff K; Hovgaard MB; Foss M; Chevallier J; Besenbacher F Colloids Surf B Biointerfaces; 2008 Oct; 66(1):53-9. PubMed ID: 18586468 [TBL] [Abstract][Full Text] [Related]
15. Size- and distance-dependent nanoparticle surface-energy transfer (NSET) method for selective sensing of hepatitis C virus RNA. Griffin J; Singh AK; Senapati D; Rhodes P; Mitchell K; Robinson B; Yu E; Ray PC Chemistry; 2009; 15(2):342-51. PubMed ID: 19035615 [TBL] [Abstract][Full Text] [Related]
16. Colloidal nanoparticle analysis by nanoelectrospray size spectrometry with a heated flow. Lenggoro IW; Widiyandari H; Hogan CJ; Biswas P; Okuyama K Anal Chim Acta; 2007 Mar; 585(2):193-201. PubMed ID: 17386665 [TBL] [Abstract][Full Text] [Related]
17. Nonaqueous magnetic nanoparticle suspensions with controlled particle size and nuclear magnetic resonance properties. Meledandri CJ; Stolarczyk JK; Ghosh S; Brougham DF Langmuir; 2008 Dec; 24(24):14159-65. PubMed ID: 19053647 [TBL] [Abstract][Full Text] [Related]
18. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. Lee KS; El-Sayed MA J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772 [TBL] [Abstract][Full Text] [Related]
19. Visibility of Si nanoparticles embedded in an amorphous SiO2 matrix. Mitome M J Electron Microsc (Tokyo); 2006 Aug; 55(4):201-7. PubMed ID: 17079276 [TBL] [Abstract][Full Text] [Related]
20. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation. Pettibone JM; Cwiertny DM; Scherer M; Grassian VH Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]