These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 20961116)

  • 1. Microchannel-nanopore device for bacterial chemotaxis assays.
    Kovarik ML; Brown PJ; Kysela DT; Berne C; Kinsella AC; Brun YV; Jacobson SC
    Anal Chem; 2010 Nov; 82(22):9357-64. PubMed ID: 20961116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Aerotactic Response of Caulobacter crescentus.
    Morse M; Colin R; Wilson LG; Tang JX
    Biophys J; 2016 May; 110(9):2076-84. PubMed ID: 27166815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated nanopore/microchannel devices for ac electrokinetic trapping of particles.
    Kovarik ML; Jacobson SC
    Anal Chem; 2008 Feb; 80(3):657-64. PubMed ID: 18179245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion-based and long-range concentration gradients of multiple chemicals for bacterial chemotaxis assays.
    Kim M; Kim T
    Anal Chem; 2010 Nov; 82(22):9401-9. PubMed ID: 20979359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial chemotaxis in static gradients quantified in a biopolymer membrane-integrated microfluidic platform.
    Hu P; Ly KL; Pham LPH; Pottash AE; Sheridan K; Wu HC; Tsao CY; Quan D; Bentley WE; Rubloff GW; Sintim HO; Luo X
    Lab Chip; 2022 Aug; 22(17):3203-3216. PubMed ID: 35856590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding the Chemical Language of Motile Bacteria by Using High-Throughput Microfluidic Assays.
    Crooks JA; Stilwell MD; Oliver PM; Zhong Z; Weibel DB
    Chembiochem; 2015 Oct; 16(15):2151-5. PubMed ID: 26285783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplexed microfluidic screening of bacterial chemotaxis.
    Stehnach MR; Henshaw RJ; Floge SA; Guasto JS
    Elife; 2023 Jul; 12():. PubMed ID: 37486823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitatively controlled in situ formation of hydrogel membranes in microchannels for generation of stable chemical gradients.
    Choi E; Jun I; Chang HK; Park KM; Shin H; Park KD; Park J
    Lab Chip; 2012 Jan; 12(2):302-8. PubMed ID: 22108911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multiscale 3D chemotaxis assay reveals bacterial navigation mechanisms.
    Grognot M; Taute KM
    Commun Biol; 2021 Jun; 4(1):669. PubMed ID: 34083715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative genomic evidence for a close relationship between the dimorphic prosthecate bacteria Hyphomonas neptunium and Caulobacter crescentus.
    Badger JH; Hoover TR; Brun YV; Weiner RM; Laub MT; Alexandre G; Mrázek J; Ren Q; Paulsen IT; Nelson KE; Khouri HM; Radune D; Sosa J; Dodson RJ; Sullivan SA; Rosovitz MJ; Madupu R; Brinkac LM; Durkin AS; Daugherty SC; Kothari SP; Giglio MG; Zhou L; Haft DH; Selengut JD; Davidsen TM; Yang Q; Zafar N; Ward NL
    J Bacteriol; 2006 Oct; 188(19):6841-50. PubMed ID: 16980487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of single bacterial chemotaxis using a linear concentration gradient microchannel.
    Jeon H; Lee Y; Jin S; Koo S; Lee CS; Yoo JY
    Biomed Microdevices; 2009 Oct; 11(5):1135-43. PubMed ID: 19548088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concentration gradient generation of multiple chemicals using spatially controlled self-assembly of particles in microchannels.
    Choi E; Chang HK; Lim CY; Kim T; Park J
    Lab Chip; 2012 Oct; 12(20):3968-75. PubMed ID: 22907568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic monitoring of Pseudomonas aeruginosa chemotaxis under the continuous chemical gradient.
    Jeong HH; Lee SH; Kim JM; Kim HE; Kim YG; Yoo JY; Chang WS; Lee CS
    Biosens Bioelectron; 2010 Oct; 26(2):351-6. PubMed ID: 20810268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concentration landscape generators for shear free dynamic chemical stimulation.
    Morel M; Galas JC; Dahan M; Studer V
    Lab Chip; 2012 Apr; 12(7):1340-6. PubMed ID: 22344388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of Caenorhabditis elegans chemotaxis using a microfluidic device.
    Hu L; Ye J; Tan H; Ge A; Tang L; Feng X; Du W; Liu BF
    Anal Chim Acta; 2015 Aug; 887():155-162. PubMed ID: 26320797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of bacterial chemotaxis in flow-based microfluidic devices.
    Englert DL; Manson MD; Jayaraman A
    Nat Protoc; 2010 May; 5(5):864-72. PubMed ID: 20431532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective and tunable gradient device for cell culture and chemotaxis study.
    Kim D; Lokuta MA; Huttenlocher A; Beebe DJ
    Lab Chip; 2009 Jun; 9(12):1797-800. PubMed ID: 19495465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of progressive motile sperm from mouse semen using on-chip chemotaxis.
    Ko YJ; Maeng JH; Lee BC; Lee S; Hwang SY; Ahn Y
    Anal Sci; 2012; 28(1):27-32. PubMed ID: 22232220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of Gradients on a Microfluidic Device: Toward a High-Throughput Investigation of Spermatozoa Chemotaxis.
    Zhang Y; Xiao RR; Yin T; Zou W; Tang Y; Ding J; Yang J
    PLoS One; 2015; 10(11):e0142555. PubMed ID: 26555941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmable, Pneumatically Actuated Microfluidic Device with an Integrated Nanochannel Array To Track Development of Individual Bacteria.
    Baker JD; Kysela DT; Zhou J; Madren SM; Wilkens AS; Brun YV; Jacobson SC
    Anal Chem; 2016 Sep; 88(17):8476-83. PubMed ID: 27314919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.