These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 20961116)
21. Programmable, Pneumatically Actuated Microfluidic Device with an Integrated Nanochannel Array To Track Development of Individual Bacteria. Baker JD; Kysela DT; Zhou J; Madren SM; Wilkens AS; Brun YV; Jacobson SC Anal Chem; 2016 Sep; 88(17):8476-83. PubMed ID: 27314919 [TBL] [Abstract][Full Text] [Related]
22. Positional information during Caulobacter cell differentiation. Gober JW; Alley MR; Shapiro L Curr Opin Genet Dev; 1991 Oct; 1(3):324-9. PubMed ID: 1840888 [TBL] [Abstract][Full Text] [Related]
23. Pump-less static microfluidic device for analysis of chemotaxis of Pseudomonas aeruginosa using wetting and capillary action. Jeong HH; Lee SH; Lee CS Biosens Bioelectron; 2013 Sep; 47():278-84. PubMed ID: 23584390 [TBL] [Abstract][Full Text] [Related]
24. Experimental verification of the behavioral foundation of bacterial transport parameters using microfluidics. Ahmed T; Stocker R Biophys J; 2008 Nov; 95(9):4481-93. PubMed ID: 18658218 [TBL] [Abstract][Full Text] [Related]
25. A Static Microfluidic Device for Investigating the Chemotaxis Response to Stable, Non-linear Gradients. Sule N; Penarete-Acosta D; Englert DL; Jayaraman A Methods Mol Biol; 2018; 1729():47-59. PubMed ID: 29429081 [TBL] [Abstract][Full Text] [Related]
26. The Two Chemotaxis Clusters in Caulobacter crescentus Play Different Roles in Chemotaxis and Biofilm Regulation. Berne C; Brun YV J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 31109992 [TBL] [Abstract][Full Text] [Related]
27. Microfluidics for bacterial chemotaxis. Ahmed T; Shimizu TS; Stocker R Integr Biol (Camb); 2010 Nov; 2(11-12):604-29. PubMed ID: 20967322 [TBL] [Abstract][Full Text] [Related]
28. A microfluidic device for quantifying bacterial chemotaxis in stable concentration gradients. Englert DL; Manson MD; Jayaraman A J Vis Exp; 2010 Apr; (38):. PubMed ID: 20404797 [TBL] [Abstract][Full Text] [Related]
30. Microfluidic device for analyzing preferential chemotaxis and chemoreceptor sensitivity of bacterial cells toward carbon sources. Kim M; Kim SH; Lee SK; Kim T Analyst; 2011 Aug; 136(16):3238-43. PubMed ID: 21716994 [TBL] [Abstract][Full Text] [Related]
31. Directed transport of bacteria-based drug delivery vehicles: bacterial chemotaxis dominates particle shape. Sahari A; Traore MA; Scharf BE; Behkam B Biomed Microdevices; 2014 Oct; 16(5):717-25. PubMed ID: 24907051 [TBL] [Abstract][Full Text] [Related]
32. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621 [TBL] [Abstract][Full Text] [Related]
33. A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis. Saadi W; Wang SJ; Lin F; Jeon NL Biomed Microdevices; 2006 Jun; 8(2):109-18. PubMed ID: 16688570 [TBL] [Abstract][Full Text] [Related]
34. Genetic analysis of a temporally transcribed chemotaxis gene cluster in Caulobacter crescentus. Alley MR; Gomes SL; Alexander W; Shapiro L Genetics; 1991 Oct; 129(2):333-41. PubMed ID: 1660425 [TBL] [Abstract][Full Text] [Related]
35. Novel Divisome-Associated Protein Spatially Coupling the Z-Ring with the Chromosomal Replication Terminus in Caulobacter crescentus. Ozaki S; Jenal U; Katayama T mBio; 2020 Apr; 11(2):. PubMed ID: 32345642 [TBL] [Abstract][Full Text] [Related]
36. A sensitive chemotaxis assay using a novel microfluidic device. Zhang C; Jang S; Amadi OC; Shimizu K; Lee RT; Mitchell RN Biomed Res Int; 2013; 2013():373569. PubMed ID: 24151597 [TBL] [Abstract][Full Text] [Related]
37. An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies. Haessler U; Kalinin Y; Swartz MA; Wu M Biomed Microdevices; 2009 Aug; 11(4):827-35. PubMed ID: 19343497 [TBL] [Abstract][Full Text] [Related]
38. Design, Fabrication, and Testing of a Microfluidic Device for Thermotaxis and Chemotaxis Assays of Sperm. Ko YJ; Maeng JH; Hwang SY; Ahn Y SLAS Technol; 2018 Dec; 23(6):507-515. PubMed ID: 29949396 [TBL] [Abstract][Full Text] [Related]
39. Bacterial chemotaxis transverse to axial flow in a microfluidic channel. Lanning LM; Ford RM; Long T Biotechnol Bioeng; 2008 Jul; 100(4):653-63. PubMed ID: 18306417 [TBL] [Abstract][Full Text] [Related]
40. Integration of solid-state nanopores in microfluidic networks via transfer printing of suspended membranes. Jain T; Guerrero RJ; Aguilar CA; Karnik R Anal Chem; 2013 Apr; 85(8):3871-8. PubMed ID: 23347165 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]