These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44. OmpW of Caulobacter crescentus Functions as an Outer Membrane Channel for Cations. Benz R; Jones MD; Younas F; Maier E; Modi N; Mentele R; Lottspeich F; Kleinekathöfer U; Smit J PLoS One; 2015; 10(11):e0143557. PubMed ID: 26606672 [TBL] [Abstract][Full Text] [Related]
45. A parallel diffusion-based microfluidic device for bacterial chemotaxis analysis. Si G; Yang W; Bi S; Luo C; Ouyang Q Lab Chip; 2012 Apr; 12(7):1389-94. PubMed ID: 22361931 [TBL] [Abstract][Full Text] [Related]
46. Self-propelling and rolling of a sessile-motile aggregate of the bacterium Caulobacter crescentus. Zeng Y; Liu B Commun Biol; 2020 Oct; 3(1):587. PubMed ID: 33067555 [TBL] [Abstract][Full Text] [Related]
47. A radial microfluidic platform for higher throughput chemotaxis studies with individual gradient control. Wu J; Kumar-Kanojia A; Hombach-Klonisch S; Klonisch T; Lin F Lab Chip; 2018 Dec; 18(24):3855-3864. PubMed ID: 30427358 [TBL] [Abstract][Full Text] [Related]
48. A tuneable microfluidic system for long duration chemotaxis experiments in a 3D collagen matrix. Aizel K; Clark AG; Simon A; Geraldo S; Funfak A; Vargas P; Bibette J; Vignjevic DM; Bremond N Lab Chip; 2017 Nov; 17(22):3851-3861. PubMed ID: 29022983 [TBL] [Abstract][Full Text] [Related]
49. Surface-charge induced ion depletion and sample stacking near single nanopores in microfluidic devices. Zhou K; Kovarik ML; Jacobson SC J Am Chem Soc; 2008 Jul; 130(27):8614-6. PubMed ID: 18549214 [TBL] [Abstract][Full Text] [Related]
51. Bacterial chemotaxis-enabled autonomous sorting of nanoparticles of comparable sizes. Suh S; Traore MA; Behkam B Lab Chip; 2016 Apr; 16(7):1254-60. PubMed ID: 26940033 [TBL] [Abstract][Full Text] [Related]
52. Dynamic remodeling of subcellular chemical gradients using a multi-directional flow device. Moorjani S; Nielson R; Chang XA; Shear JB Lab Chip; 2010 Aug; 10(16):2139-46. PubMed ID: 20544072 [TBL] [Abstract][Full Text] [Related]
53. Multiplexed end-point microfluidic chemotaxis assay using centrifugal alignment. Satti S; Deng P; Matthews K; Duffy SP; Ma H Lab Chip; 2020 Aug; 20(17):3096-3103. PubMed ID: 32748936 [TBL] [Abstract][Full Text] [Related]
54. Low flagellar motor torque and high swimming efficiency of Caulobacter crescentus swarmer cells. Li G; Tang JX Biophys J; 2006 Oct; 91(7):2726-34. PubMed ID: 16844761 [TBL] [Abstract][Full Text] [Related]
55. Bacterial chemotaxis toward a NAPL source within a pore-scale microfluidic chamber. Wang X; Long T; Ford RM Biotechnol Bioeng; 2012 Jul; 109(7):1622-8. PubMed ID: 22252781 [TBL] [Abstract][Full Text] [Related]
56. Proteolysis of the McpA chemoreceptor does not require the Caulobacter major chemotaxis operon. Tsai JW; Alley MR J Bacteriol; 2000 Jan; 182(2):504-7. PubMed ID: 10629199 [TBL] [Abstract][Full Text] [Related]
57. A robust diffusion-based gradient generator for dynamic cell assays. Atencia J; Cooksey GA; Locascio LE Lab Chip; 2012 Jan; 12(2):309-16. PubMed ID: 22113489 [TBL] [Abstract][Full Text] [Related]
58. Isolation and characterization of a xylose-dependent promoter from Caulobacter crescentus. Meisenzahl AC; Shapiro L; Jenal U J Bacteriol; 1997 Feb; 179(3):592-600. PubMed ID: 9006009 [TBL] [Abstract][Full Text] [Related]
59. Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients. Irimia D; Liu SY; Tharp WG; Samadani A; Toner M; Poznansky MC Lab Chip; 2006 Feb; 6(2):191-8. PubMed ID: 16450027 [TBL] [Abstract][Full Text] [Related]
60. Shapeshifting to Survive: Shape Determination and Regulation in Caulobacter crescentus. Woldemeskel SA; Goley ED Trends Microbiol; 2017 Aug; 25(8):673-687. PubMed ID: 28359631 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]