These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
457 related articles for article (PubMed ID: 20961148)
1. Photoinduced charge carrier dynamics of Zn-porphyrin-TiO2 electrodes: the key role of charge recombination for solar cell performance. Imahori H; Kang S; Hayashi H; Haruta M; Kurata H; Isoda S; Canton SE; Infahsaeng Y; Kathiravan A; Pascher T; Chábera P; Yartsev AP; Sundström V J Phys Chem A; 2011 Apr; 115(16):3679-90. PubMed ID: 20961148 [TBL] [Abstract][Full Text] [Related]
2. Porphyrins for dye-sensitised solar cells: new insights into efficiency-determining electron transfer steps. Griffith MJ; Sunahara K; Wagner P; Wagner K; Wallace GG; Officer DL; Furube A; Katoh R; Mori S; Mozer AJ Chem Commun (Camb); 2012 May; 48(35):4145-62. PubMed ID: 22441329 [TBL] [Abstract][Full Text] [Related]
3. Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes. Wang XF; Tamiaki H; Wang L; Tamai N; Kitao O; Zhou H; Sasaki S Langmuir; 2010 May; 26(9):6320-7. PubMed ID: 20380394 [TBL] [Abstract][Full Text] [Related]
4. Dye sensitization of single crystal semiconductor electrodes. Spitler MT; Parkinson BA Acc Chem Res; 2009 Dec; 42(12):2017-29. PubMed ID: 19924998 [TBL] [Abstract][Full Text] [Related]
5. "Spider"-shaped porphyrins with conjugated pyridyl anchoring groups as efficient sensitizers for dye-sensitized solar cells. Stangel C; Bagaki A; Angaridis PA; Charalambidis G; Sharma GD; Coutsolelos AG Inorg Chem; 2014 Nov; 53(22):11871-81. PubMed ID: 25365138 [TBL] [Abstract][Full Text] [Related]
6. Interfacial confined formation of mesoporous spherical TiO2 nanostructures with improved photoelectric conversion efficiency. Shao W; Gu F; Li C; Lu M Inorg Chem; 2010 Jun; 49(12):5453-9. PubMed ID: 20507078 [TBL] [Abstract][Full Text] [Related]
7. Porphyrin-sensitized nanoparticulate TiO2 as the photoanode of a hybrid photoelectrochemical biofuel cell. Brune A; Jeong G; Liddell PA; Sotomura T; Moore TA; Moore AL; Gust D Langmuir; 2004 Sep; 20(19):8366-71. PubMed ID: 15350115 [TBL] [Abstract][Full Text] [Related]
8. Photoinduced electron transfer in Zn(II)porphyrin-bridge-Pt(II)acetylide complexes: variation in rate with anchoring group and position of the bridge. Göransson E; Boixel J; Monnereau C; Blart E; Pellegrin Y; Becker HC; Hammarström L; Odobel F Inorg Chem; 2010 Nov; 49(21):9823-32. PubMed ID: 20919727 [TBL] [Abstract][Full Text] [Related]
9. Electron transfer dynamics in dye-sensitized solar cells utilizing oligothienylvinylene derivates as organic sensitizers. Clifford JN; Forneli A; López-Arroyo L; Caballero R; de la Cruz P; Langa F; Palomares E ChemSusChem; 2009; 2(4):344-9. PubMed ID: 19338013 [TBL] [Abstract][Full Text] [Related]
10. A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands. Tae EL; Lee SH; Lee JK; Yoo SS; Kang EJ; Yoon KB J Phys Chem B; 2005 Dec; 109(47):22513-22. PubMed ID: 16853932 [TBL] [Abstract][Full Text] [Related]
11. Porphyrin-fullerene linked systems as artificial photosynthetic mimics. Imahori H Org Biomol Chem; 2004 May; 2(10):1425-33. PubMed ID: 15136797 [TBL] [Abstract][Full Text] [Related]
12. Heterogeneous electron transfer from dye-sensitized nanocrystalline TiO2 to [Co(bpy)3]3+: insights gained from impedance spectroscopy. Liu Y; Jennings JR; Zakeeruddin SM; Grätzel M; Wang Q J Am Chem Soc; 2013 Mar; 135(10):3939-52. PubMed ID: 23425317 [TBL] [Abstract][Full Text] [Related]
13. The origin of open circuit voltage of porphyrin-sensitised TiO(2) solar cells. Mozer AJ; Wagner P; Officer DL; Wallace GG; Campbell WM; Miyashita M; Sunahara K; Mori S Chem Commun (Camb); 2008 Oct; (39):4741-3. PubMed ID: 18830478 [TBL] [Abstract][Full Text] [Related]
14. From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells. Boix PP; Lee YH; Fabregat-Santiago F; Im SH; Mora-Sero I; Bisquert J; Seok SI ACS Nano; 2012 Jan; 6(1):873-80. PubMed ID: 22175224 [TBL] [Abstract][Full Text] [Related]
15. Efficient sensitization of dye-sensitized solar cells by novel triazine-bridged porphyrin-porphyrin dyads. Zervaki GE; Roy MS; Panda MK; Angaridis PA; Chrissos E; Sharma GD; Coutsolelos AG Inorg Chem; 2013 Sep; 52(17):9813-25. PubMed ID: 23944691 [TBL] [Abstract][Full Text] [Related]
16. Semiconductor hierarchically structured flower-like clusters for dye-sensitized solar cells with nearly 100% charge collection efficiency. Xin X; Liu HY; Ye M; Lin Z Nanoscale; 2013 Nov; 5(22):11220-6. PubMed ID: 24081015 [TBL] [Abstract][Full Text] [Related]
17. Photoinduced electron transfer in multiporphyrinic interlocked structures: the effect of copper(I) coordination in the central site. Flamigni L; Talarico AM; Chambron JC; Heitz V; Linke M; Fujita N; Sauvage JP Chemistry; 2004 Jun; 10(11):2689-99. PubMed ID: 15195300 [TBL] [Abstract][Full Text] [Related]
18. Efficient co-sensitization of nanocrystalline TiO(2) films by organic sensitizers. Yum JH; Jang SR; Walter P; Geiger T; Nüesch F; Kim S; Ko J; Grätzel M; Nazeeruddin MK Chem Commun (Camb); 2007 Nov; (44):4680-2. PubMed ID: 17989831 [TBL] [Abstract][Full Text] [Related]
19. Visible light water splitting using dye-sensitized oxide semiconductors. Youngblood WJ; Lee SH; Maeda K; Mallouk TE Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000 [TBL] [Abstract][Full Text] [Related]
20. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Imahori H; Umeyama T; Ito S Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]