These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 20961219)

  • 1. Elbow kinematics during overground manual wheelchair propulsion in individuals with tetraplegia.
    Goins AM; Morgan K; Stephens CL; Engsberg JR
    Disabil Rehabil Assist Technol; 2011; 6(4):312-9. PubMed ID: 20961219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trunk and neck kinematics during overground manual wheelchair propulsion in persons with tetraplegia.
    Julien MC; Morgan K; Stephens CL; Standeven J; Engsberg J
    Disabil Rehabil Assist Technol; 2014 May; 9(3):213-8. PubMed ID: 23548111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of overground and treadmill propulsion patterns of manual wheelchair users with tetraplegia.
    Stephens CL; Engsberg JR
    Disabil Rehabil Assist Technol; 2010; 5(6):420-7. PubMed ID: 20441443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing the shoulder impingement kinematics between circular and pumping strokes in manual wheelchair propulsion.
    Feng CK; Wei SH; Chen WY; Lee HC; Yu CH
    Disabil Rehabil Assist Technol; 2010; 5(6):448-55. PubMed ID: 20925493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of verbal training and visual feedback on manual wheelchair propulsion.
    DeGroot KK; Hollingsworth HH; Morgan KA; Morris CL; Gray DB
    Disabil Rehabil Assist Technol; 2009 Mar; 4(2):86-94. PubMed ID: 19253097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematics of wheelchair propulsion in adults and children with spinal cord injury.
    Bednarczyk JH; Sanderson DJ
    Arch Phys Med Rehabil; 1994 Dec; 75(12):1327-34. PubMed ID: 7993172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preferred elbow position in confined wheelchair configuration.
    Lin CJ; Lin PC; Su FC
    J Biomech; 2009 May; 42(8):1005-9. PubMed ID: 19345359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of increased load on scapular kinematics during manual wheelchair propulsion in individuals with paraplegia and tetraplegia.
    Raina S; McNitt-Gray JL; Mulroy S; Requejo PS
    Hum Mov Sci; 2012 Apr; 31(2):397-407. PubMed ID: 21782267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symmetry of the elbow kinematics during racing wheelchair propulsion.
    Goosey VL; Campbell IG
    Ergonomics; 1998 Dec; 41(12):1810-20. PubMed ID: 9857839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stroke pattern and handrim biomechanics for level and uphill wheelchair propulsion at self-selected speeds.
    Richter WM; Rodriguez R; Woods KR; Axelson PW
    Arch Phys Med Rehabil; 2007 Jan; 88(1):81-7. PubMed ID: 17207680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upper limb joint kinetics during manual wheelchair propulsion in patients with different levels of spinal cord injury.
    Gil-Agudo A; Del Ama-Espinosa A; Pérez-Rizo E; Pérez-Nombela S; Pablo Rodríguez-Rodríguez L
    J Biomech; 2010 Sep; 43(13):2508-15. PubMed ID: 20541760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematic characterization of wheelchair propulsion.
    Shimada SD; Robertson RN; Bonninger ML; Cooper RA
    J Rehabil Res Dev; 1998 Jun; 35(2):210-8. PubMed ID: 9651893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Filter frequency selection for manual wheelchair biomechanics.
    Cooper RA; DiGiovine CP; Boninger ML; Shimada SD; Koontz AM; Baldwin MA
    J Rehabil Res Dev; 2002; 39(3):323-36. PubMed ID: 12173753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is effective force application in handrim wheelchair propulsion also efficient?
    Bregman DJ; van Drongelen S; Veeger HE
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):13-9. PubMed ID: 18990473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wheelchair propulsion biomechanics and wheelers' quality of life: an exploratory review.
    Chow JW; Levy CE
    Disabil Rehabil Assist Technol; 2011; 6(5):365-77. PubMed ID: 20932232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of camber on the ergonomics of propulsion in wheelchair athletes.
    Mason B; VAN DER Woude L; DE Groot S; Goosey-Tolfrey V
    Med Sci Sports Exerc; 2011 Feb; 43(2):319-26. PubMed ID: 20581712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shoulder kinematics and kinetics during two speeds of wheelchair propulsion.
    Koontz AM; Cooper RA; Boninger ML; Souza AL; Fay BT
    J Rehabil Res Dev; 2002; 39(6):635-49. PubMed ID: 17943666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia.
    Collinger JL; Boninger ML; Koontz AM; Price R; Sisto SA; Tolerico ML; Cooper RA
    Arch Phys Med Rehabil; 2008 Apr; 89(4):667-76. PubMed ID: 18373997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Systematic Methodology to Analyze the Impact of Hand-Rim Wheelchair Propulsion on the Upper Limb.
    Larraga-García B; Lozano-Berrio V; Gutiérrez Á; Gil-Agudo Á; Del-Ama AJ
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31731458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of shoulder muscle electromyographic activity during standard manual wheelchair and push-rim activated power assisted wheelchair propulsion in persons with complete tetraplegia.
    Lighthall-Haubert L; Requejo PS; Mulroy SJ; Newsam CJ; Bontrager E; Gronley JK; Perry J
    Arch Phys Med Rehabil; 2009 Nov; 90(11):1904-15. PubMed ID: 19887216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.