These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 20961219)

  • 21. Consequences of a cross slope on wheelchair handrim biomechanics.
    Richter WM; Rodriguez R; Woods KR; Axelson PW
    Arch Phys Med Rehabil; 2007 Jan; 88(1):76-80. PubMed ID: 17207679
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomechanics of wheelchair propulsion as a function of seat position and user-to-chair interface.
    Hughes CJ; Weimar WH; Sheth PN; Brubaker CE
    Arch Phys Med Rehabil; 1992 Mar; 73(3):263-9. PubMed ID: 1543431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomechanics of wheelchair propulsion during fatigue.
    Rodgers MM; Gayle GW; Figoni SF; Kobayashi M; Lieh J; Glaser RM
    Arch Phys Med Rehabil; 1994 Jan; 75(1):85-93. PubMed ID: 8291970
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Upper-limb joint power and its distribution in spinal cord injured wheelchair users: steady-state self-selected speed versus maximal acceleration trials.
    Price R; Ashwell ZR; Chang MW; Boninger ML; Koontz AM; Sisto SA
    Arch Phys Med Rehabil; 2007 Apr; 88(4):456-63. PubMed ID: 17398246
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries.
    Beekman CE; Miller-Porter L; Schoneberger M
    Phys Ther; 1999 Feb; 79(2):146-58. PubMed ID: 10029055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of joystick stiffness, movement speed and movement direction on joystick and upper limb kinematics when using hydraulic-actuation joystick controls in heavy vehicles.
    Oliver M; Tingley M; Rogers R; Rickards J; Biden E
    Ergonomics; 2007 Jun; 50(6):837-58. PubMed ID: 17457745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selected comparisons between experienced and non-experienced individuals during manual wheelchair propulsion.
    Patterson P; Draper S
    Biomed Sci Instrum; 1997; 33():477-81. PubMed ID: 9731406
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wheelchair axle position effect on start-up propulsion performance of persons with tetraplegia.
    Freixes O; Fernández SA; Gatti MA; Crespo MJ; Olmos LE; Rubel IF
    J Rehabil Res Dev; 2010; 47(7):661-8. PubMed ID: 21110262
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Manual wheelchair propulsion patterns on natural surfaces during start-up propulsion.
    Koontz AM; Roche BM; Collinger JL; Cooper RA; Boninger ML
    Arch Phys Med Rehabil; 2009 Nov; 90(11):1916-23. PubMed ID: 19887217
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Seat height in handrim wheelchair propulsion.
    van der Woude LH; Veeger DJ; Rozendal RH; Sargeant TJ
    J Rehabil Res Dev; 1989; 26(4):31-50. PubMed ID: 2600867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Manual wheelchair propulsion pattern use by people with multiple sclerosis.
    Verza R; Battaglia MA; Uccelli MM
    Disabil Rehabil Assist Technol; 2010; 5(5):314-7. PubMed ID: 20131974
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shoulder movements during the initial phase of learning manual wheelchair propulsion in able-bodied subjects.
    Roux L; Hanneton S; Roby-Brami A
    Clin Biomech (Bristol, Avon); 2006; 21 Suppl 1():S45-51. PubMed ID: 16274903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biceps-to-triceps transfer for elbow extension in persons with tetraplegia.
    Kozin SH; D'Addesi L; Chafetz RS; Ashworth S; Mulcahey MJ
    J Hand Surg Am; 2010 Jun; 35(6):968-75. PubMed ID: 20513578
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of training on biomechanics of wheelchair propulsion.
    Rodgers MM; Keyser RE; Rasch EK; Gorman PH; Russell PJ
    J Rehabil Res Dev; 2001; 38(5):505-11. PubMed ID: 11732828
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of handrim diameter on manual wheelchair propulsion: mechanical energy and power flow analysis.
    Guo LY; Su FC; An KN
    Clin Biomech (Bristol, Avon); 2006 Feb; 21(2):107-15. PubMed ID: 16226359
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of kinematics, kinetics, and EMG throughout wheelchair propulsion in able-bodied and persons with paraplegia: an integrative approach.
    Dubowsky SR; Sisto SA; Langrana NA
    J Biomech Eng; 2009 Feb; 131(2):021015. PubMed ID: 19102574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shooting mechanics related to player classification and free throw success in wheelchair basketball.
    Malone LA; Gervais PL; Steadward RD
    J Rehabil Res Dev; 2002; 39(6):701-9. PubMed ID: 17943672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of visual biofeedback on the propulsion effectiveness of experienced wheelchair users.
    Kotajarvi BR; Basford JR; An KN; Morrow DA; Kaufman KR
    Arch Phys Med Rehabil; 2006 Apr; 87(4):510-5. PubMed ID: 16571390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Upper limb joint dynamics during manual wheelchair propulsion.
    Desroches G; Dumas R; Pradon D; Vaslin P; Lepoutre FX; Chèze L
    Clin Biomech (Bristol, Avon); 2010 May; 25(4):299-306. PubMed ID: 20106573
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomechanical analysis of wheelchair propulsion for various seating positions.
    Mâsse LC; Lamontagne M; O'Riain MD
    J Rehabil Res Dev; 1992; 29(3):12-28. PubMed ID: 1640378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.