BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 20961895)

  • 1. Nano-mechanical properties of individual mineralized collagen fibrils from bone tissue.
    Hang F; Barber AH
    J R Soc Interface; 2011 Apr; 8(57):500-5. PubMed ID: 20961895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanointerfacial strength between non-collagenous protein and collagen fibrils in antler bone.
    Hang F; Gupta HS; Barber AH
    J R Soc Interface; 2014 Mar; 11(92):20130993. PubMed ID: 24352676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water promotes the formation of fibril bridging in antler bone illuminated by in situ AFM testing.
    Chen X; Qian T; Hang F; Chen X
    J Mech Behav Biomed Mater; 2021 Aug; 120():104580. PubMed ID: 34015573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone.
    Gupta HS; Krauss S; Kerschnitzki M; Karunaratne A; Dunlop JW; Barber AH; Boesecke P; Funari SS; Fratzl P
    J Mech Behav Biomed Mater; 2013 Dec; 28():366-82. PubMed ID: 23707600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histocompositional organization and toughening mechanisms in antler.
    Skedros JG; Keenan KE; Cooper DML; Bloebaum RD
    J Struct Biol; 2014 Aug; 187(2):129-148. PubMed ID: 24981169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks.
    Wang Y; Ural A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103361. PubMed ID: 31493689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging exacerbates the morphological and mechanical response of mineralized collagen fibrils in murine cortical bone to disuse.
    Liu F; Hu K; Al-Qudsy LH; Wu LQ; Wang Z; Xu HY; Yang H; Yang PF
    Acta Biomater; 2022 Oct; 152():345-354. PubMed ID: 36087867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deformation regimes of collagen fibrils in cortical bone revealed by in situ morphology and elastic modulus observations under mechanical loading.
    Yang PF; Nie XT; Zhao DD; Wang Z; Ren L; Xu HY; Rittweger J; Shang P
    J Mech Behav Biomed Mater; 2018 Mar; 79():115-121. PubMed ID: 29291465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A coarse-grained molecular dynamics investigation of the role of mineral arrangement on the mechanical properties of mineralized collagen fibrils.
    Tavakol M; Vaughan TJ
    J R Soc Interface; 2023 Jan; 20(198):20220803. PubMed ID: 36695019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An examination of the micromechanics of failure of bone and antler by acoustic emission tests and Laser Scanning Confocal Microscopy.
    Zioupos P; Currey JD; Sedman AJ
    Med Eng Phys; 1994 May; 16(3):203-12. PubMed ID: 8061906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhomogeneous fibril stretching in antler starts after macroscopic yielding: indication for a nanoscale toughening mechanism.
    Krauss S; Fratzl P; Seto J; Currey JD; Estevez JA; Funari SS; Gupta HS
    Bone; 2009 Jun; 44(6):1105-10. PubMed ID: 19236962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastic deformation of mineralized collagen fibrils: an equivalent inclusion based composite model.
    Akkus O
    J Biomech Eng; 2005 Jun; 127(3):383-90. PubMed ID: 16060345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discerning the subfibrillar structure of mineralized collagen fibrils: a model for the ultrastructure of bone.
    Li Y; Aparicio C
    PLoS One; 2013; 8(9):e76782. PubMed ID: 24086763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mineralized Collagen Fibrils: An Essential Component in Determining the Mechanical Behavior of Cortical Bone.
    Al-Qudsy L; Hu YW; Xu H; Yang PF
    ACS Biomater Sci Eng; 2023 May; 9(5):2203-2219. PubMed ID: 37075172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ tensile testing of nanofibers by combining atomic force microscopy and scanning electron microscopy.
    Hang F; Lu D; Bailey RJ; Jimenez-Palomar I; Stachewicz U; Cortes-Ballesteros B; Davies M; Zech M; Bödefeld C; Barber AH
    Nanotechnology; 2011 Sep; 22(36):365708. PubMed ID: 21844643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micromechanical modelling of transverse fracture behaviour of lamellar bone using a phase-field damage model: The role of non-collagenous proteins and mineralised collagen fibrils.
    Alijani H; Vaughan TJ
    J Mech Behav Biomed Mater; 2024 May; 153():106472. PubMed ID: 38432183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of hydration and mineralization on the deformation mechanisms of collagen fibrils in bone at the nanoscale.
    Fielder M; Nair AK
    Biomech Model Mechanobiol; 2019 Feb; 18(1):57-68. PubMed ID: 30088113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical properties of mineralized collagen fibrils as influenced by demineralization.
    Balooch M; Habelitz S; Kinney JH; Marshall SJ; Marshall GW
    J Struct Biol; 2008 Jun; 162(3):404-10. PubMed ID: 18467127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does nutrition affect bone porosity and mineral tissue distribution in deer antlers? The relationship between histology, mechanical properties and mineral composition.
    Landete-Castillejos T; Currey JD; Ceacero F; García AJ; Gallego L; Gomez S
    Bone; 2012 Jan; 50(1):245-54. PubMed ID: 22071000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on polystyrene, associated with distinct tissue micro- and ultrastructure.
    Saruwatari L; Aita H; Butz F; Nakamura HK; Ouyang J; Yang Y; Chiou WA; Ogawa T
    J Bone Miner Res; 2005 Nov; 20(11):2002-16. PubMed ID: 16234974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.