BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 20961956)

  • 1. Crystal structure of RIG-I C-terminal domain bound to blunt-ended double-strand RNA without 5' triphosphate.
    Lu C; Ranjith-Kumar CT; Hao L; Kao CC; Li P
    Nucleic Acids Res; 2011 Mar; 39(4):1565-75. PubMed ID: 20961956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structural basis of 5' triphosphate double-stranded RNA recognition by RIG-I C-terminal domain.
    Lu C; Xu H; Ranjith-Kumar CT; Brooks MT; Hou TY; Hu F; Herr AB; Strong RK; Kao CC; Li P
    Structure; 2010 Aug; 18(8):1032-43. PubMed ID: 20637642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of RNA recognition and activation by innate immune receptor RIG-I.
    Jiang F; Ramanathan A; Miller MT; Tang GQ; Gale M; Patel SS; Marcotrigiano J
    Nature; 2011 Sep; 479(7373):423-7. PubMed ID: 21947008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of double-stranded RNA recognition by the RIG-I like receptor MDA5.
    Li X; Lu C; Stewart M; Xu H; Strong RK; Igumenova T; Li P
    Arch Biochem Biophys; 2009 Aug; 488(1):23-33. PubMed ID: 19531363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional insights into 5'-ppp RNA pattern recognition by the innate immune receptor RIG-I.
    Wang Y; Ludwig J; Schuberth C; Goldeck M; Schlee M; Li H; Juranek S; Sheng G; Micura R; Tuschl T; Hartmann G; Patel DJ
    Nat Struct Mol Biol; 2010 Jul; 17(7):781-7. PubMed ID: 20581823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The RIG-I-like receptor LGP2 recognizes the termini of double-stranded RNA.
    Li X; Ranjith-Kumar CT; Brooks MT; Dharmaiah S; Herr AB; Kao C; Li P
    J Biol Chem; 2009 May; 284(20):13881-13891. PubMed ID: 19278996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA.
    Pippig DA; Hellmuth JC; Cui S; Kirchhofer A; Lammens K; Lammens A; Schmidt A; Rothenfusser S; Hopfner KP
    Nucleic Acids Res; 2009 Apr; 37(6):2014-25. PubMed ID: 19208642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains: identification of the RNA recognition loop in RIG-I-like receptors.
    Takahasi K; Kumeta H; Tsuduki N; Narita R; Shigemoto T; Hirai R; Yoneyama M; Horiuchi M; Ogura K; Fujita T; Inagaki F
    J Biol Chem; 2009 Jun; 284(26):17465-74. PubMed ID: 19380577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35.
    Leung DW; Prins KC; Borek DM; Farahbakhsh M; Tufariello JM; Ramanan P; Nix JC; Helgeson LA; Otwinowski Z; Honzatko RB; Basler CF; Amarasinghe GK
    Nat Struct Mol Biol; 2010 Feb; 17(2):165-72. PubMed ID: 20081868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and biochemical studies of RIG-I antiviral signaling.
    Feng M; Ding Z; Xu L; Kong L; Wang W; Jiao S; Shi Z; Greene MI; Cong Y; Zhou Z
    Protein Cell; 2013 Feb; 4(2):142-54. PubMed ID: 23264040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional analysis reveals that human OASL binds dsRNA to enhance RIG-I signaling.
    Ibsen MS; Gad HH; Andersen LL; Hornung V; Julkunen I; Sarkar SN; Hartmann R
    Nucleic Acids Res; 2015 May; 43(10):5236-48. PubMed ID: 25925578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner.
    Peisley A; Wu B; Yao H; Walz T; Hur S
    Mol Cell; 2013 Sep; 51(5):573-83. PubMed ID: 23993742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into RNA recognition by RIG-I.
    Luo D; Ding SC; Vela A; Kohlway A; Lindenbach BD; Pyle AM
    Cell; 2011 Oct; 147(2):409-22. PubMed ID: 22000018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Analysis of dsRNA Binding to Anti-viral Pattern Recognition Receptors LGP2 and MDA5.
    Uchikawa E; Lethier M; Malet H; Brunel J; Gerlier D; Cusack S
    Mol Cell; 2016 May; 62(4):586-602. PubMed ID: 27203181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses.
    Takahasi K; Yoneyama M; Nishihori T; Hirai R; Kumeta H; Narita R; Gale M; Inagaki F; Fujita T
    Mol Cell; 2008 Feb; 29(4):428-40. PubMed ID: 18242112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic discrimination of self/non-self RNA by the ATPase activity of RIG-I and MDA5.
    Louber J; Brunel J; Uchikawa E; Cusack S; Gerlier D
    BMC Biol; 2015 Jul; 13():54. PubMed ID: 26215161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The autoinhibitory CARD2-Hel2i Interface of RIG-I governs RNA selection.
    Ramanathan A; Devarkar SC; Jiang F; Miller MT; Khan AG; Marcotrigiano J; Patel SS
    Nucleic Acids Res; 2016 Jan; 44(2):896-909. PubMed ID: 26612866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A structure-based model of RIG-I activation.
    Kolakofsky D; Kowalinski E; Cusack S
    RNA; 2012 Dec; 18(12):2118-27. PubMed ID: 23118418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallization and preliminary crystallographic studies of human RIG-I in complex with double-stranded RNA.
    Moon H; Choe J
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Jun; 65(Pt 6):648-50. PubMed ID: 19478455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RIG-I recognizes metabolite-capped RNAs as signaling ligands.
    Schweibenz BD; Solotchi M; Hanpude P; Devarkar SC; Patel SS
    Nucleic Acids Res; 2023 Aug; 51(15):8102-8114. PubMed ID: 37326006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.