BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 20962260)

  • 1. On how monospecific memory-like autoregulatory CD8+ T cells can blunt diabetogenic autoimmunity: a computational approach.
    Khadra A; Tsai S; Santamaria P; Edelstein-Keshet L
    J Immunol; 2010 Nov; 185(10):5962-72. PubMed ID: 20962260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversal of autoimmunity by boosting memory-like autoregulatory T cells.
    Tsai S; Shameli A; Yamanouchi J; Clemente-Casares X; Wang J; Serra P; Yang Y; Medarova Z; Moore A; Santamaria P
    Immunity; 2010 Apr; 32(4):568-80. PubMed ID: 20381385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling competition among autoreactive CD8+ T cells in autoimmune diabetes: implications for antigen-specific therapy.
    Marée AF; Santamaria P; Edelstein-Keshet L
    Int Immunol; 2006 Jul; 18(7):1067-77. PubMed ID: 16728432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of memory-like autoregulatory CD8+ T cells is CD4+ T cell dependent.
    Shameli A; Clemente-Casares X; Wang J; Santamaria P
    J Immunol; 2011 Sep; 187(6):2859-66. PubMed ID: 21824864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of low avidity T cells in the protection against type 1 diabetes: a modeling investigation.
    Khadra A; Santamaria P; Edelstein-Keshet L
    J Theor Biol; 2009 Jan; 256(1):126-41. PubMed ID: 18950644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the importance of pMHC valency, total pMHC dose and frequency on nanoparticle therapeutic efficacy.
    Sugarman J; Tsai S; Santamaria P; Khadra A
    Immunol Cell Biol; 2013 May; 91(5):350-9. PubMed ID: 23528729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental control of CD8 T cell-avidity maturation in autoimmune diabetes.
    Han B; Serra P; Yamanouchi J; Amrani A; Elliott JF; Dickie P; Dilorenzo TP; Santamaria P
    J Clin Invest; 2005 Jul; 115(7):1879-87. PubMed ID: 15937548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The frequency and immunodominance of islet-specific CD8+ T-cell responses change after type 1 diabetes diagnosis and treatment.
    Martinuzzi E; Novelli G; Scotto M; Blancou P; Bach JM; Chaillous L; Bruno G; Chatenoud L; van Endert P; Mallone R
    Diabetes; 2008 May; 57(5):1312-20. PubMed ID: 18305140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimal impact of a de novo-expressed beta-cell autoantigen on spontaneous diabetes development in NOD mice.
    Martinic MM; Juedes AE; Bresson D; Homann D; Skak K; Huber C; Ling E; Ejrnaes M; Wolfe T; Togher L; Christen U; von Herrath MG
    Diabetes; 2007 Apr; 56(4):1059-68. PubMed ID: 17395746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory CD8+ T cells induced by exposure to all-trans retinoic acid and TGF-beta suppress autoimmune diabetes.
    Kishi M; Yasuda H; Abe Y; Sasaki H; Shimizu M; Arai T; Okumachi Y; Moriyama H; Hara K; Yokono K; Nagata M
    Biochem Biophys Res Commun; 2010 Mar; 394(1):228-32. PubMed ID: 20206130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CD8+ T cells in type 1 diabetes.
    Tsai S; Shameli A; Santamaria P
    Adv Immunol; 2008; 100():79-124. PubMed ID: 19111164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Humanized" HLA transgenic NOD mice to identify pancreatic beta cell autoantigens of potential clinical relevance to type 1 diabetes.
    Serreze DV; Marron MP; Dilorenzo TP
    Ann N Y Acad Sci; 2007 Apr; 1103():103-11. PubMed ID: 17376821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progression of autoimmune diabetes driven by avidity maturation of a T-cell population.
    Amrani A; Verdaguer J; Serra P; Tafuro S; Tan R; Santamaria P
    Nature; 2000 Aug; 406(6797):739-42. PubMed ID: 10963600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CD8(+) T cells specific for beta cells encounter their cognate antigens in the islets of NOD mice.
    Pang S; Zhang L; Wang H; Yi Z; Li L; Gao L; Zhao J; Tisch R; Katz JD; Wang B
    Eur J Immunol; 2009 Oct; 39(10):2716-24. PubMed ID: 19658094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two mechanisms for the non-MHC-linked resistance to spontaneous autoimmunity.
    Verdaguer J; Amrani A; Anderson B; Schmidt D; Santamaria P
    J Immunol; 1999 Apr; 162(8):4614-26. PubMed ID: 10202001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prevention of diabetes by manipulation of anti-IGRP autoimmunity: high efficiency of a low-affinity peptide.
    Han B; Serra P; Amrani A; Yamanouchi J; Marée AF; Edelstein-Keshet L; Santamaria P
    Nat Med; 2005 Jun; 11(6):645-52. PubMed ID: 15908957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CD8+ T lymphocytes specific for glutamic acid decarboxylase 90-98 epitope mediate diabetes in NOD SCID mouse.
    Sévère S; Gauvrit A; Vu AT; Bach JM
    Mol Immunol; 2007 Apr; 44(11):2950-60. PubMed ID: 17336387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular expression requirements for inhibition of type 1 diabetes by a dominantly protective major histocompatibility complex haplotype.
    Chen YG; Silveira PA; Osborne MA; Chapman HD; Serreze DV
    Diabetes; 2007 Feb; 56(2):424-30. PubMed ID: 17259387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic and therapeutic control of diabetogenic CD8+ T cells.
    Santamaria P
    Novartis Found Symp; 2008; 292():130-6; discussion 136-45, 202-3. PubMed ID: 19209463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The good turned ugly: immunopathogenic basis for diabetogenic CD8+ T cells in NOD mice.
    DiLorenzo TP; Serreze DV
    Immunol Rev; 2005 Apr; 204():250-63. PubMed ID: 15790363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.