BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 20962682)

  • 1. Effects of fatigue on muscle stiffness and intermittent sprinting during cycling.
    Ditroilo M; Watsford M; Fernández-Peña E; D'Amen G; Lucertini F; De Vito G
    Med Sci Sports Exerc; 2011 May; 43(5):837-45. PubMed ID: 20962682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle stiffness and rate of torque development during sprint cycling.
    Watsford M; Ditroilo M; Fernández-Peña E; D'Amen G; Lucertini F
    Med Sci Sports Exerc; 2010 Jul; 42(7):1324-32. PubMed ID: 20019624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of induced alkalosis and submaximal cycling on neuromuscular response during sustained isometric contraction.
    Hunter AM; De Vito G; Bolger C; Mullany H; Galloway SD
    J Sports Sci; 2009 Oct; 27(12):1261-9. PubMed ID: 19787544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A protocol for measuring the direct effect of cycling on neuromuscular control of running in triathletes.
    Chapman AR; Vicenzino B; Hodges PW; Blanch P; Hahn AG; Milner TE
    J Sports Sci; 2009 May; 27(7):767-82. PubMed ID: 19437184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soccer fatigue, sprinting and hamstring injury risk.
    Small K; McNaughton LR; Greig M; Lohkamp M; Lovell R
    Int J Sports Med; 2009 Aug; 30(8):573-8. PubMed ID: 19455478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue-induced reductions of torque and shortening velocity are muscle dependent.
    Cheng AJ; Rice CL
    Med Sci Sports Exerc; 2010 Sep; 42(9):1651-9. PubMed ID: 20142774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recurrence quantification analysis of surface electromyographic signal: sensitivity to potentiation and neuromuscular fatigue.
    Morana C; Ramdani S; Perrey S; Varray A
    J Neurosci Methods; 2009 Feb; 177(1):73-9. PubMed ID: 18955082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central fatigue affects plantar flexor strength after prolonged running.
    Saldanha A; Nordlund Ekblom MM; Thorstensson A
    Scand J Med Sci Sports; 2008 Jun; 18(3):383-8. PubMed ID: 18028283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peripheral neuromuscular fatigue induced by repeated-sprint exercise: cycling vs. running.
    Rampinini E; Connolly DR; Ferioli D; La Torre A; Alberti G; Bosio A
    J Sports Med Phys Fitness; 2016; 56(1-2):49-59. PubMed ID: 25289713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen uptake kinetics during two bouts of heavy cycling separated by fatiguing sprint exercise in humans.
    Tordi N; Perrey S; Harvey A; Hughson RL
    J Appl Physiol (1985); 2003 Feb; 94(2):533-41. PubMed ID: 12391053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peripheral and central fatigue after muscle-damaging exercise is muscle length dependent and inversely related.
    Skurvydas A; Brazaitis M; Kamandulis S; Sipaviciene S
    J Electromyogr Kinesiol; 2010 Aug; 20(4):655-60. PubMed ID: 20347333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of resistive load on performance and surface EMG activity during repeated cycling sprints on a non-isokinetic cycle ergometer.
    Matsuura R; Arimitsu T; Yunoki T; Yano T
    Br J Sports Med; 2011 Aug; 45(10):820-4. PubMed ID: 19952377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of muscle fatigue during biking.
    Knaflitz M; Molinari F
    IEEE Trans Neural Syst Rehabil Eng; 2003 Mar; 11(1):17-23. PubMed ID: 12797721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromuscular trunk performance and spinal loading during a fatiguing isometric trunk extension with varying torque requirements.
    Sparto PJ; Parnianpour M; Marras WS; Granata KP; Reinsel TE; Simon S
    J Spinal Disord; 1997 Apr; 10(2):145-56. PubMed ID: 9113613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing electromyographic and mechanomyographic frequency-based fatigue thresholds to critical torque during isometric forearm flexion.
    Hendrix CR; Housh TJ; Camic CL; Zuniga JM; Johnson GO; Schmidt RJ
    J Neurosci Methods; 2010 Dec; 194(1):64-72. PubMed ID: 20637234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue and recovery after high-intensity exercise. Part II: Recovery interventions.
    Lattier G; Millet GY; Martin A; Martin V
    Int J Sports Med; 2004 Oct; 25(7):509-15. PubMed ID: 15459831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The efficiency of pedaling and the muscular recruitment are improved with increase of the cadence in cyclists and non-cyclists.
    Dantas JL; Smirmaul BP; Altimari LR; Okano AH; Fontes EB; Camata TV; Moraes AC
    Electromyogr Clin Neurophysiol; 2009; 49(6-7):311-9. PubMed ID: 19845104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of critical force to EMG fatigue thresholds during isometric leg extension.
    Hendrix CR; Housh TJ; Johnson GO; Mielke M; Camic CL; Zuniga JM; Schmidt RJ
    Med Sci Sports Exerc; 2009 Apr; 41(4):956-64. PubMed ID: 19276836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of fluid ingestion on neuromuscular function during prolonged cycling exercise.
    Vallier JM; Grego F; Basset F; Lepers R; Bernard T; Brisswalter J
    Br J Sports Med; 2005 Apr; 39(4):e17. PubMed ID: 15793075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Submaximal fatigue and recovery in boys and men.
    Hatzikotoulas K; Patikas D; Bassa E; Hadjileontiadis L; Koutedakis Y; Kotzamanidis C
    Int J Sports Med; 2009 Oct; 30(10):741-6. PubMed ID: 19585398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.