BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

581 related articles for article (PubMed ID: 20962780)

  • 1. Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast.
    Pavelka N; Rancati G; Zhu J; Bradford WD; Saraf A; Florens L; Sanderson BW; Hattem GL; Li R
    Nature; 2010 Nov; 468(7321):321-5. PubMed ID: 20962780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary genomics: When abnormality is beneficial.
    Berman J
    Nature; 2010 Nov; 468(7321):183-4. PubMed ID: 21068824
    [No Abstract]   [Full Text] [Related]  

  • 3. Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy.
    Chen G; Bradford WD; Seidel CW; Li R
    Nature; 2012 Jan; 482(7384):246-50. PubMed ID: 22286062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypo-osmotic-like stress underlies general cellular defects of aneuploidy.
    Tsai HJ; Nelliat AR; Choudhury MI; Kucharavy A; Bradford WD; Cook ME; Kim J; Mair DB; Sun SX; Schatz MC; Li R
    Nature; 2019 Jun; 570(7759):117-121. PubMed ID: 31068692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Karyotypic determinants of chromosome instability in aneuploid budding yeast.
    Zhu J; Pavelka N; Bradford WD; Rancati G; Li R
    PLoS Genet; 2012; 8(5):e1002719. PubMed ID: 22615582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosome-Specific and Global Effects of Aneuploidy in Saccharomyces cerevisiae.
    Dodgson SE; Kim S; Costanzo M; Baryshnikova A; Morse DL; Kaiser CA; Boone C; Amon A
    Genetics; 2016 Apr; 202(4):1395-409. PubMed ID: 26837754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyploidy can drive rapid adaptation in yeast.
    Selmecki AM; Maruvka YE; Richmond PA; Guillet M; Shoresh N; Sorenson AL; De S; Kishony R; Michor F; Dowell R; Pellman D
    Nature; 2015 Mar; 519(7543):349-52. PubMed ID: 25731168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast.
    Dephoure N; Hwang S; O'Sullivan C; Dodgson SE; Gygi SP; Amon A; Torres EM
    Elife; 2014 Jul; 3():e03023. PubMed ID: 25073701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The environmental stress response causes ribosome loss in aneuploid yeast cells.
    Terhorst A; Sandikci A; Keller A; Whittaker CA; Dunham MJ; Amon A
    Proc Natl Acad Sci U S A; 2020 Jul; 117(29):17031-17040. PubMed ID: 32632008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole Genome Analysis of 132 Clinical Saccharomyces cerevisiae Strains Reveals Extensive Ploidy Variation.
    Zhu YO; Sherlock G; Petrov DA
    G3 (Bethesda); 2016 Aug; 6(8):2421-34. PubMed ID: 27317778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aneuploid proliferation defects in yeast are not driven by copy number changes of a few dosage-sensitive genes.
    Bonney ME; Moriya H; Amon A
    Genes Dev; 2015 May; 29(9):898-903. PubMed ID: 25934502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of aneuploidy on cellular physiology and cell division in haploid yeast.
    Torres EM; Sokolsky T; Tucker CM; Chan LY; Boselli M; Dunham MJ; Amon A
    Science; 2007 Aug; 317(5840):916-24. PubMed ID: 17702937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aneuploidy causes proteotoxic stress in yeast.
    Oromendia AB; Dodgson SE; Amon A
    Genes Dev; 2012 Dec; 26(24):2696-708. PubMed ID: 23222101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aneuploidy-induced proteotoxic stress can be effectively tolerated without dosage compensation, genetic mutations, or stress responses.
    Larrimore KE; Barattin-Voynova NS; Reid DW; Ng DTW
    BMC Biol; 2020 Sep; 18(1):117. PubMed ID: 32900371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-translocational adaptation drives evolution through genetic selection and transcriptional shift in Saccharomyces cerevisiae.
    Tosato V; Sims J; West N; Colombin M; Bruschi CV
    Curr Genet; 2017 May; 63(2):281-292. PubMed ID: 27491680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overdosage of Balanced Protein Complexes Reduces Proliferation Rate in Aneuploid Cells.
    Chen Y; Chen S; Li K; Zhang Y; Huang X; Li T; Wu S; Wang Y; Carey LB; Qian W
    Cell Syst; 2019 Aug; 9(2):129-142.e5. PubMed ID: 31351919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural proteome diversity links aneuploidy tolerance to protein turnover.
    Muenzner J; Trébulle P; Agostini F; Zauber H; Messner CB; Steger M; Kilian C; Lau K; Barthel N; Lehmann A; Textoris-Taube K; Caudal E; Egger AS; Amari F; De Chiara M; Demichev V; Gossmann TI; Mülleder M; Liti G; Schacherer J; Selbach M; Berman J; Ralser M
    Nature; 2024 Jun; 630(8015):149-157. PubMed ID: 38778096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic interactions between specific chromosome copy number alterations dictate complex aneuploidy patterns.
    Ravichandran MC; Fink S; Clarke MN; Hofer FC; Campbell CS
    Genes Dev; 2018 Dec; 32(23-24):1485-1498. PubMed ID: 30463904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of aneuploidy on gene expression: implications for cancer.
    Dürrbaum M; Storchová Z
    FEBS J; 2016 Mar; 283(5):791-802. PubMed ID: 26555863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The protein expression landscape of mitosis and meiosis in diploid budding yeast.
    Becker E; Com E; Lavigne R; Guilleux MH; Evrard B; Pineau C; Primig M
    J Proteomics; 2017 Mar; 156():5-19. PubMed ID: 28057603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.