These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

587 related articles for article (PubMed ID: 20962985)

  • 1. Intrapulse temporal and wavelength shifts of a high-power 2.1-µm Ho:YAG laser and their potential influence on atmospheric lidar measurements.
    Vaidyanathan M; Killinger DK
    Appl Opt; 1994 Nov; 33(33):7747-53. PubMed ID: 20962985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable 2.1-,microm Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles.
    Cha S; Chan KP; Killinger DK
    Appl Opt; 1991 Sep; 30(27):3938-43. PubMed ID: 20706485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement.
    Bruneau D; Cazeneuve H; Loth C; Pelon J
    Appl Opt; 1991 Sep; 30(27):3930-7. PubMed ID: 20706484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-frequency, Q-switched Ho:YAG laser at room temperature injection-seeded by two F-P etalons-restricted Tm, Ho:YAG laser.
    Dai TY; Ju YL; Yao BQ; Shen YJ; Wang W; Wang YZ
    Opt Lett; 2012 Jun; 37(11):1850-2. PubMed ID: 22660050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Profiling atmospheric water vapor using a fiber laser lidar system.
    De Young RJ; Barnes NP
    Appl Opt; 2010 Feb; 49(4):562-7. PubMed ID: 20119001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water vapor differential absorption lidar development and evaluation.
    Browell EV; Wilkerson TD; McIlrath TJ
    Appl Opt; 1979 Oct; 18(20):3474-83. PubMed ID: 20216627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High pulse repetition frequency, multiple wavelength, pulsed CO(2) lidar system for atmospheric transmission and target reflectance measurements.
    Ben-David A; Emery SL; Gotoff SW; D'Amico FM
    Appl Opt; 1992 Jul; 31(21):4224-32. PubMed ID: 20725406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system.
    Ponsardin P; Higdon NS; Grossmann BE; Browell EV
    Appl Opt; 1994 Sep; 33(27):6439-50. PubMed ID: 20941182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directly diode-pumped high-energy Ho:YAG oscillator.
    Lamrini S; Koopmann P; Schäfer M; Scholle K; Fuhrberg P
    Opt Lett; 2012 Feb; 37(4):515-7. PubMed ID: 22344091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable and wavelength-locked Q-switched narrow-linewidth Er:YAG laser at 1645 nm.
    Tang P; Liu J; Huang B; Xu C; Zhao C; Wen S
    Opt Express; 2015 May; 23(9):11037-42. PubMed ID: 25969199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Air pollution monitoring with a Q-switched CO(2)-laser lidar using heterodyne detection.
    Lundqvist S; Fält CO; Persson U; Marthinsson B; Eng ST
    Appl Opt; 1981 Jul; 20(14):2534-8. PubMed ID: 20332988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-power Ti:sapphire laser at 820 nm for scanning ground-based water-vapor differential absorption lidar.
    Wagner G; Behrendt A; Wulfmeyer V; Späth F; Schiller M
    Appl Opt; 2013 Apr; 52(11):2454-69. PubMed ID: 23670775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detailed performance modeling of a pulsed high-power single-frequency Ti:sapphire laser.
    Wagner G; Wulfmeyer V; Behrendt A
    Appl Opt; 2011 Nov; 50(31):5921-37. PubMed ID: 22086016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ho:CaF(2) solid-state saturable-absorber Q switch for the 2-µm Tm,Cr:Y(3)Al(5)O(12) laser.
    Kuo YK; Birnbaum M; Unlu F; Huang MF
    Appl Opt; 1996 May; 35(15):2576-9. PubMed ID: 21085398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements.
    Koch GJ; Beyon JY; Gibert F; Barnes BW; Ismail S; Petros M; Petzar PJ; Yu J; Modlin EA; Davis KJ; Singh UN
    Appl Opt; 2008 Mar; 47(7):944-56. PubMed ID: 18311266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2-μm Ho emitter-based coherent DIAL for CO(2) profiling in the atmosphere.
    Gibert F; Edouart D; Cénac C; Le Mounier F; Dumas A
    Opt Lett; 2015 Jul; 40(13):3093-6. PubMed ID: 26125375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO(2) laser for lidar applications, producing two narrowly spaced independently wavelength-selectable Q-switched output pulses.
    Piltingsrud HV
    Appl Opt; 1991 Sep; 30(27):3952-63. PubMed ID: 20706487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherent 2 microm differential absorption and wind lidar with conductively cooled laser and two-axis scanning device.
    Ishii S; Mizutani K; Fukuoka H; Ishikawa T; Philippe B; Iwai H; Aoki T; Itabe T; Sato A; Asai K
    Appl Opt; 2010 Apr; 49(10):1809-17. PubMed ID: 20357863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lidar measurements taken with a large-aperture liquid mirror. 1. Rayleigh-scatter system.
    Sica RJ; Sargoytchev S; Argall PS; Borra EF; Girard L; Sparrow CT; Flatt S
    Appl Opt; 1995 Oct; 34(30):6925-36. PubMed ID: 21060554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an eye-safe solid-state tunable laser transmitter in the 1.4-1.5 microm wavelength region based on Cr4+:YAG crystal for lidar applications.
    Petrova-Mayor A; Wulfmeyer V; Weibring P
    Appl Opt; 2008 Apr; 47(10):1522-34. PubMed ID: 18382581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.