These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 20963042)

  • 21. Orthonormal polynomials for annular pupil including a cross-shaped obstruction.
    Dai F; Wang X; Sasaki O
    Appl Opt; 2015 Apr; 54(10):2922-8. PubMed ID: 25967208
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accuracy of Zernike polynomials in characterizing optical aberrations and the corneal surface of the eye.
    Carvalho LA
    Invest Ophthalmol Vis Sci; 2005 Jun; 46(6):1915-26. PubMed ID: 15914604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study of Zernike polynomials of an elliptical aperture obscured with an elliptical obscuration: comment.
    Díaz JA; Mahajan VN
    Appl Opt; 2013 Aug; 52(24):5962-4. PubMed ID: 24084998
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scaling pseudo-Zernike expansion coefficients to different pupil sizes.
    Schwiegerling J
    Opt Lett; 2011 Aug; 36(16):3076-8. PubMed ID: 21847165
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Zernike olivary polynomials for applications with olivary pupils.
    Zheng Y; Sun S; Li Y
    Appl Opt; 2016 Apr; 55(12):3116-25. PubMed ID: 27140076
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analytical method for the transformation of Zernike polynomial coefficients for scaled, rotated, and translated pupils.
    Li L; Zhang B; Xu Y; Wang D
    Appl Opt; 2018 Dec; 57(34):F22-F30. PubMed ID: 30645277
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comprehensive approach to deal with instrumental optical aberrations effects in high-accuracy photon's orbital angular momentum spectrum measurements.
    Uribe-Patarroyo N; Alvarez-Herrero A; Belenguer T
    Opt Express; 2010 Sep; 18(20):21111-20. PubMed ID: 20941007
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generalization of Zernike polynomials for regular portions of circles and ellipses.
    Navarro R; López JL; Díaz JA; Sinusía EP
    Opt Express; 2014 Sep; 22(18):21263-79. PubMed ID: 25321506
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Zernike expansion of derivatives and Laplacians of the Zernike circle polynomials.
    Janssen AJ
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jul; 31(7):1604-13. PubMed ID: 25121449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Orthonormal curvature polynomials over a unit circle: basis set derived from curvatures of Zernike polynomials.
    Zhao C; Burge JH
    Opt Express; 2013 Dec; 21(25):31430-43. PubMed ID: 24514717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variational calculus approach to Zernike polynomials with application to FCS.
    Gligonov I; Enderlein J
    Biophys J; 2024 Aug; ():. PubMed ID: 39164968
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials.
    Robert Iskander D; Davis BA; Collins MJ; Franklin R
    Ophthalmic Physiol Opt; 2007 May; 27(3):245-55. PubMed ID: 17470237
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Orthonormal vector general polynomials derived from the Cartesian gradient of the orthonormal Zernike-based polynomials.
    Mafusire C; Krüger TPJ
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jun; 35(6):840-849. PubMed ID: 29877326
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Orthonormal polynomials for hexagonal pupils.
    Mahajan VN; Dai GM
    Opt Lett; 2006 Aug; 31(16):2462-4. PubMed ID: 16880856
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Algorithm for computation of Zernike polynomials expansion coefficients.
    Prata A; Rusch WV
    Appl Opt; 1989 Feb; 28(4):749-54. PubMed ID: 20548554
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Zernike vs. Bessel circular functions in visual optics.
    Trevino JP; Gómez-Correa JE; Iskander DR; Chávez-Cerda S
    Ophthalmic Physiol Opt; 2013 Jul; 33(4):394-402. PubMed ID: 23668897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient and robust recurrence relations for the Zernike circle polynomials and their derivatives in Cartesian coordinates.
    Andersen TB
    Opt Express; 2018 Jul; 26(15):18878-18896. PubMed ID: 30114148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Balanced diffraction aberrations, independent of the observation point: application to a tilted dielectric plate.
    Sheppard CJ
    J Opt Soc Am A Opt Image Sci Vis; 2013 Oct; 30(10):2150-61. PubMed ID: 24322870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Applications of the elastic modes of a circular plate in wavefront correction of the adaptive optics and the active optics.
    Wang H; Zhang M; Gao J; Lan Y; Zuo Y; Zheng X
    Opt Express; 2021 Jan; 29(2):1109-1124. PubMed ID: 33726333
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recursive formula to compute Zernike radial polynomials.
    Honarvar Shakibaei B; Paramesran R
    Opt Lett; 2013 Jul; 38(14):2487-9. PubMed ID: 23939089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.