BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 20963456)

  • 1. Glycation in diabetic nephropathy.
    Forbes JM; Cooper ME
    Amino Acids; 2012 Apr; 42(4):1185-92. PubMed ID: 20963456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regular moderate exercise reduces advanced glycation and ameliorates early diabetic nephropathy in obese Zucker rats.
    Boor P; Celec P; Behuliak M; Grancic P; Kebis A; Kukan M; Pronayová N; Liptaj T; Ostendorf T; Sebeková K
    Metabolism; 2009 Nov; 58(11):1669-77. PubMed ID: 19608208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced glycation end-products: implications for diabetic and non-diabetic nephropathies.
    Daroux M; Prévost G; Maillard-Lefebvre H; Gaxatte C; D'Agati VD; Schmidt AM; Boulanger E
    Diabetes Metab; 2010 Feb; 36(1):1-10. PubMed ID: 19932633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced glycation end products and the kidney.
    Bohlender JM; Franke S; Stein G; Wolf G
    Am J Physiol Renal Physiol; 2005 Oct; 289(4):F645-59. PubMed ID: 16159899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AGE-RAGE and AGE Cross-link interaction: important players in the pathogenesis of diabetic kidney disease.
    Jensen LJ; Østergaard J; Flyvbjerg A
    Horm Metab Res; 2005 Apr; 37 Suppl 1():26-34. PubMed ID: 15918107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From molecular footprints of disease to new therapeutic interventions in diabetic nephropathy.
    Miyata T; Yamamoto M; Izuhara Y
    Ann N Y Acad Sci; 2005 Jun; 1043():740-9. PubMed ID: 16037301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal increases in urinary carboxymethyllysine correlate with albuminuria development in diabetes.
    Coughlan MT; Forbes JM
    Am J Nephrol; 2011; 34(1):9-17. PubMed ID: 21654162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AGE, RAGE, and ROS in diabetic nephropathy.
    Tan AL; Forbes JM; Cooper ME
    Semin Nephrol; 2007 Mar; 27(2):130-43. PubMed ID: 17418682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced glycation end-products and the kidney.
    Busch M; Franke S; Rüster C; Wolf G
    Eur J Clin Invest; 2010 Aug; 40(8):742-55. PubMed ID: 20649640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diabetic threesome (hyperglycaemia, renal function and nutrition) and advanced glycation end products: evidence for the multiple-hit agent?
    Kanková K
    Proc Nutr Soc; 2008 Feb; 67(1):60-74. PubMed ID: 18234133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The amelioration of streptozotocin diabetes-induced renal damage by Wu-Ling-San (Hoelen Five Herb Formula), a traditional Chinese prescription.
    Liu IM; Tzeng TF; Liou SS; Chang CJ
    J Ethnopharmacol; 2009 Jul; 124(2):211-8. PubMed ID: 19397971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significance of proximal tubular metabolism of advanced glycation end products in kidney diseases.
    Saito A; Takeda T; Sato K; Hama H; Tanuma A; Kaseda R; Suzuki Y; Gejyo F
    Ann N Y Acad Sci; 2005 Jun; 1043():637-43. PubMed ID: 16037287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of advanced glycation end product formation by Pu-erh tea ameliorates progression of experimental diabetic nephropathy.
    Yan SJ; Wang L; Li Z; Zhu DN; Guo SC; Xin WF; Yang YF; Cong X; Ma T; Shen PP; Sheng J; Zhang WS
    J Agric Food Chem; 2012 Apr; 60(16):4102-10. PubMed ID: 22482420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced glycosylation end products in patients with diabetic nephropathy.
    Makita Z; Radoff S; Rayfield EJ; Yang Z; Skolnik E; Delaney V; Friedman EA; Cerami A; Vlassara H
    N Engl J Med; 1991 Sep; 325(12):836-42. PubMed ID: 1875967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway.
    Thallas-Bonke V; Thorpe SR; Coughlan MT; Fukami K; Yap FY; Sourris KC; Penfold SA; Bach LA; Cooper ME; Forbes JM
    Diabetes; 2008 Feb; 57(2):460-9. PubMed ID: 17959934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new perspective on therapeutic inhibition of advanced glycation in diabetic microvascular complications: common downstream endpoints achieved through disparate therapeutic approaches?
    Sourris KC; Harcourt BE; Forbes JM
    Am J Nephrol; 2009; 30(4):323-35. PubMed ID: 19556753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renoprotective effects of a novel inhibitor of advanced glycation.
    Forbes JM; Soulis T; Thallas V; Panagiotopoulos S; Long DM; Vasan S; Wagle D; Jerums G; Cooper ME
    Diabetologia; 2001 Jan; 44(1):108-14. PubMed ID: 11206401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing advanced glycation end product-modified albumin by the renal proximal tubule and the early pathogenesis of diabetic nephropathy.
    Ozdemir AM; Hopfer U; Erhard P; Monnier VM; Weiss MF
    Ann N Y Acad Sci; 2005 Jun; 1043():625-36. PubMed ID: 16037286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease.
    Li JH; Huang XR; Zhu HJ; Oldfield M; Cooper M; Truong LD; Johnson RJ; Lan HY
    FASEB J; 2004 Jan; 18(1):176-8. PubMed ID: 12709399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of advanced glycation end products (AGEs) and their receptor (RAGE) in the pathogenesis of diabetic microangiopathy.
    Yamagishi S; Takeuchi M; Inagaki Y; Nakamura K; Imaizumi T
    Int J Clin Pharmacol Res; 2003; 23(4):129-34. PubMed ID: 15224502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.