BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 20963824)

  • 1. Establishment of mice expressing EGFP in the placode-derived inner ear sensory cell lineage and FACS-array analysis focused on the regional specificity of the otocyst.
    Fujimoto C; Ozeki H; Uchijima Y; Suzukawa K; Mitani A; Fukuhara S; Nishiyama K; Kurihara Y; Kondo K; Aburatani H; Kaga K; Yamasoba T; Kurihara H
    J Comp Neurol; 2010 Dec; 518(23):4702-22. PubMed ID: 20963824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of the transcription factors GATA3 and Pax2 during development of the mammalian inner ear.
    Lawoko-Kerali G; Rivolta MN; Holley M
    J Comp Neurol; 2002 Jan; 442(4):378-91. PubMed ID: 11793341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origins of inner ear sensory organs revealed by fate map and time-lapse analyses.
    Kil SH; Collazo A
    Dev Biol; 2001 May; 233(2):365-79. PubMed ID: 11336501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of conditionally immortalized cell lines derived from mouse early embryonic inner ear.
    Germiller JA; Smiley EC; Ellis AD; Hoff JS; Deshmukh I; Allen SJ; Barald KF
    Dev Dyn; 2004 Dec; 231(4):815-27. PubMed ID: 15517566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNA-183 family members regulate sensorineural fates in the inner ear.
    Li H; Kloosterman W; Fekete DM
    J Neurosci; 2010 Mar; 30(9):3254-63. PubMed ID: 20203184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Islet-1 expression in the developing chicken inner ear.
    Li H; Liu H; Sage C; Huang M; Chen ZY; Heller S
    J Comp Neurol; 2004 Sep; 477(1):1-10. PubMed ID: 15281076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of neural fate and control of inner ear morphogenesis by Tbx1.
    Raft S; Nowotschin S; Liao J; Morrow BE
    Development; 2004 Apr; 131(8):1801-12. PubMed ID: 15084464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prox1 interacts with Atoh1 and Gfi1, and regulates cellular differentiation in the inner ear sensory epithelia.
    Kirjavainen A; Sulg M; Heyd F; Alitalo K; Ylä-Herttuala S; Möröy T; Petrova TV; Pirvola U
    Dev Biol; 2008 Oct; 322(1):33-45. PubMed ID: 18652815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lineage tracing of Sox2-expressing progenitor cells in the mouse inner ear reveals a broad contribution to non-sensory tissues and insights into the origin of the organ of Corti.
    Gu R; Brown RM; Hsu CW; Cai T; Crowder AL; Piazza VG; Vadakkan TJ; Dickinson ME; Groves AK
    Dev Biol; 2016 Jun; 414(1):72-84. PubMed ID: 27090805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rbpj regulates development of prosensory cells in the mammalian inner ear.
    Yamamoto N; Chang W; Kelley MW
    Dev Biol; 2011 May; 353(2):367-79. PubMed ID: 21420948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zebrafish Foxi1 provides a neuronal ground state during inner ear induction preceding the Dlx3b/4b-regulated sensory lineage.
    Hans S; Irmscher A; Brand M
    Development; 2013 May; 140(9):1936-45. PubMed ID: 23571216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of otic vesicle and hair cell stereocilia morphogenesis by Ena/VASP-like (Evl) in Xenopus.
    Wanner SJ; Miller JR
    J Cell Sci; 2007 Aug; 120(Pt 15):2641-51. PubMed ID: 17635997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lineage analysis of the late otocyst stage mouse inner ear by transuterine microinjection of a retroviral vector encoding alkaline phosphatase and an oligonucleotide library.
    Jiang H; Wang L; Beier KT; Cepko CL; Fekete DM; Brigande JV
    PLoS One; 2013; 8(7):e69314. PubMed ID: 23935981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of inner ear fate maps and cell lineage studies.
    Kil SH; Collazo A
    J Neurobiol; 2002 Nov; 53(2):129-42. PubMed ID: 12382271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of DRASIC in the mouse inner ear.
    Hildebrand MS; de Silva MG; Klockars T; Rose E; Price M; Smith RJ; McGuirt WT; Christopoulos H; Petit C; Dahl HH
    Hear Res; 2004 Apr; 190(1-2):149-60. PubMed ID: 15051137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein transduction into the mouse otocyst using arginine-rich cell-penetrating peptides.
    Miwa T; Minoda R; Kaitsuka T; Ise M; Tomizawa K; Yumoto E
    Neuroreport; 2011 Dec; 22(18):994-9. PubMed ID: 22045255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of Prox1 defines regions of the avian otocyst that give rise to sensory or neural cells.
    Stone JS; Shang JL; Tomarev S
    J Comp Neurol; 2003 Jun; 460(4):487-502. PubMed ID: 12717709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Class III beta-tubulin expression in sensory and nonsensory regions of the developing avian inner ear.
    Molea D; Stone JS; Rubel EW
    J Comp Neurol; 1999 Apr; 406(2):183-98. PubMed ID: 10096605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From Otic Induction to Hair Cell Production: Pax2
    Schaefer SA; Higashi AY; Loomis B; Schrepfer T; Wan G; Corfas G; Dressler GR; Duncan RK
    Stem Cells Dev; 2018 Feb; 27(4):237-251. PubMed ID: 29272992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterning and cell fate in ear development.
    Alsina B; Giraldez F; Pujades C
    Int J Dev Biol; 2009; 53(8-10):1503-13. PubMed ID: 19247974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.