These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 20964212)
21. Assessment of trabecular structure using high resolution magnetic resonance imaging. Majumdar S; Genant HK Stud Health Technol Inform; 1997; 40():81-96. PubMed ID: 10168884 [TBL] [Abstract][Full Text] [Related]
22. Fractal dimension of trabecular bone: comparison of three histomorphometric computed techniques for measuring the architectural two-dimensional complexity. Chappard D; Legrand E; Haettich B; Chalès G; Auvinet B; Eschard JP; Hamelin JP; Baslé MF; Audran M J Pathol; 2001 Nov; 195(4):515-21. PubMed ID: 11745685 [TBL] [Abstract][Full Text] [Related]
23. A review of magnetic resonance (MR) imaging of trabecular bone micro-architecture: contribution to the prediction of biomechanical properties and fracture prevalence. Majumdar S Technol Health Care; 1998 Dec; 6(5-6):321-7. PubMed ID: 10100935 [TBL] [Abstract][Full Text] [Related]
24. Radiographic bone texture analysis is correlated with 3D microarchitecture in the femoral head, and improves the estimation of the femoral neck fracture risk when combined with bone mineral density. Ollivier M; Le Corroller T; Blanc G; Parratte S; Champsaur P; Chabrand P; Argenson JN Eur J Radiol; 2013 Sep; 82(9):1494-8. PubMed ID: 23756323 [TBL] [Abstract][Full Text] [Related]
25. On the fractal nature of trabecular structure. Chung HW; Chu CC; Underweiser M; Wehrli FW Med Phys; 1994 Oct; 21(10):1535-40. PubMed ID: 7869984 [TBL] [Abstract][Full Text] [Related]
26. Fractal dimension and architecture of trabecular bone. Fazzalari NL; Parkinson IH J Pathol; 1996 Jan; 178(1):100-5. PubMed ID: 8778308 [TBL] [Abstract][Full Text] [Related]
27. Fractal dimension: A complementary diagnostic indicator of osteoporosis to bone mineral density. Chen Q; Bao N; Yao Q; Li ZY Med Hypotheses; 2018 Jul; 116():136-138. PubMed ID: 29857898 [TBL] [Abstract][Full Text] [Related]
28. Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Krug R; Banerjee S; Han ET; Newitt DC; Link TM; Majumdar S Osteoporos Int; 2005 Nov; 16(11):1307-14. PubMed ID: 15999292 [TBL] [Abstract][Full Text] [Related]
29. Imaging of trabecular bone structure in osteoporosis. Link TM; Majumdar S; Grampp S; Guglielmi G; van Kuijk C; Imhof H; Glueer C; Adams JE Eur Radiol; 1999; 9(9):1781-8. PubMed ID: 10602950 [TBL] [Abstract][Full Text] [Related]
30. In vivo comparison between computed tomography and magnetic resonance image analysis of the distal radius in the assessment of osteoporosis. Cortet B; Boutry N; Dubois P; Bourel P; Cotten A; Marchandise X J Clin Densitom; 2000; 3(1):15-26. PubMed ID: 10917740 [TBL] [Abstract][Full Text] [Related]
31. High-resolution magnetic resonance imaging of trabecular bone in the wrist at 3 tesla: initial results. Ludescher B; Martirosian P; Lenk S; Machann J; Dammann F; Schick F; Claussen C; Schlemmer H Acta Radiol; 2005 May; 46(3):306-9. PubMed ID: 15981728 [TBL] [Abstract][Full Text] [Related]
32. Fractal analysis of trabecular bone texture on calcaneus radiographs: effects of age, time since menopause and hormone replacement therapy. Lespessailles E; Poupon S; Niamane R; Loiseau-Peres S; Derommelaere G; Harba R; Courteix D; Benhamou CL Osteoporos Int; 2002 May; 13(5):366-72. PubMed ID: 12086346 [TBL] [Abstract][Full Text] [Related]
33. Processing and analysis of in vivo high-resolution MR images of trabecular bone for longitudinal studies: reproducibility of structural measures and micro-finite element analysis derived mechanical properties. Newitt DC; van Rietbergen B; Majumdar S Osteoporos Int; 2002; 13(4):278-87. PubMed ID: 12030542 [TBL] [Abstract][Full Text] [Related]
34. Three-dimensional-line skeleton graph analysis of high-resolution magnetic resonance images: a validation study from 34-microm-resolution microcomputed tomography. Pothuaud L; Laib A; Levitz P; Benhamou CL; Majumdar S J Bone Miner Res; 2002 Oct; 17(10):1883-95. PubMed ID: 12369792 [TBL] [Abstract][Full Text] [Related]
35. Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. Wehrli FW; Gomberg BR; Saha PK; Song HK; Hwang SN; Snyder PJ J Bone Miner Res; 2001 Aug; 16(8):1520-31. PubMed ID: 11499875 [TBL] [Abstract][Full Text] [Related]
36. Cancellous bone volume and structure in the forearm: noninvasive assessment with MR microimaging and image processing. Wehrli FW; Hwang SN; Ma J; Song HK; Ford JC; Haddad JG Radiology; 1998 Feb; 206(2):347-57. PubMed ID: 9457185 [TBL] [Abstract][Full Text] [Related]
37. Cancellous bone changes in the radius of patients with rheumatoid arthritis: a cross-sectional quantitative macroradiographic study. Disini L; Foster M; Milligan PJ; Buckland-Wright JC Rheumatology (Oxford); 2004 Sep; 43(9):1150-7. PubMed ID: 15226513 [TBL] [Abstract][Full Text] [Related]
38. Assessment of bone microarchitecture in chronic kidney disease: a comparison of 2D bone texture analysis and high-resolution peripheral quantitative computed tomography at the radius and tibia. Bacchetta J; Boutroy S; Vilayphiou N; Fouque-Aubert A; Delmas PD; Lespessailles E; Fouque D; Chapurlat R Calcif Tissue Int; 2010 Nov; 87(5):385-91. PubMed ID: 20711834 [TBL] [Abstract][Full Text] [Related]
39. Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. Legrand E; Chappard D; Pascaretti C; Duquenne M; Krebs S; Rohmer V; Basle MF; Audran M J Bone Miner Res; 2000 Jan; 15(1):13-9. PubMed ID: 10646109 [TBL] [Abstract][Full Text] [Related]
40. The use of μCT and fractal dimension for fracture prediction in osteoporotic individuals. Arnold EL; Clement J; Rogers KD; Garcia-Castro F; Greenwood C J Mech Behav Biomed Mater; 2020 Mar; 103():103585. PubMed ID: 32090913 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]