These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 20964316)

  • 21. Technique of laser calibration for wavelength-modulation spectroscopy with application to proton exchange membrane fuel cell measurements.
    Sur R; Boucher TJ; Renfro MW; Cetegen BM
    Appl Opt; 2010 Jan; 49(1):61-70. PubMed ID: 20062491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Research on water discharge characteristics of PEM fuel cells by using neutron imaging technology at the NRF, HANARO.
    Kim T; Sim C; Kim M
    Appl Radiat Isot; 2008 May; 66(5):593-605. PubMed ID: 18242098
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of water on the changes in morphology and proton conductivity for the highly crystalline hydrocarbon polymer electrolyte membrane for fuel cells.
    Barique MA; Wu L; Takimoto N; Kidena K; Ohira A
    J Phys Chem B; 2009 Dec; 113(49):15921-7. PubMed ID: 19908869
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two dimensional distribution measurement of electric current generated in a polymer electrolyte fuel cell using 49 NMR surface coils.
    Ogawa K; Sasaki T; Yoneda S; Tsujinaka K; Asai R
    Magn Reson Imaging; 2018 Sep; 51():163-172. PubMed ID: 29778692
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Soft X-ray imaging and spectromicroscopy: new insights in chemical state and morphology of the key components in operating fuel-cells.
    Bozzini B; Abyaneh MK; Amati M; Gianoncelli A; Gregoratti L; Kaulich B; Kiskinova M
    Chemistry; 2012 Aug; 18(33):10196-210. PubMed ID: 22836392
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomembranes for fuel cell electrolytes employing anhydrous proton conducting uracil composites.
    Yamada M; Honma I
    Biosens Bioelectron; 2006 May; 21(11):2064-9. PubMed ID: 16530401
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solvent-Free, One-Pot Synthesis of Tungsten Semi-Carbide for Stable and Self-Hydrating Short-Side-Chain-Based Polymer Electrolyte Membrane for Low-Humidity Hydrogen Fuel Cells.
    Neeshma M; Bhat SD
    ACS Appl Mater Interfaces; 2023 Nov; 15(46):53881-53890. PubMed ID: 37936373
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sputtered cathodes for polymer electrolyte fuel cells: insights into potentials, challenges and limitations.
    Schwanitz B; Rabis A; Horisberger M; Scherer GG; Schmidt TJ
    Chimia (Aarau); 2012; 66(3):110-9. PubMed ID: 22546254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications.
    Miyatake K; Chikashige Y; Higuchi E; Watanabe M
    J Am Chem Soc; 2007 Apr; 129(13):3879-87. PubMed ID: 17352469
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Four-dimensional joint visualization of electrode degradation and liquid water distribution inside operating polymer electrolyte fuel cells.
    White RT; Eberhardt SH; Singh Y; Haddow T; Dutta M; Orfino FP; Kjeang E
    Sci Rep; 2019 Feb; 9(1):1843. PubMed ID: 30755635
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NMR measurement system including two synchronized ring buffers, with 128 rf coils for in situ water monitoring in a polymer electrolyte fuel cell.
    Ogawa K; Haishi T; Aoki M; Hasegawa H; Morisaka S; Hashimoto S
    Rev Sci Instrum; 2017 Jan; 88(1):014701. PubMed ID: 28147668
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimation of electrode ionomer oxygen permeability and ionomer-phase oxygen transport resistance in polymer electrolyte fuel cells.
    Sambandam S; Parrondo J; Ramani V
    Phys Chem Chem Phys; 2013 Sep; 15(36):14994-5002. PubMed ID: 23912796
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells.
    Theodorakakos A; Ous T; Gavaises M; Nouri JM; Nikolopoulos N; Yanagihara H
    J Colloid Interface Sci; 2006 Aug; 300(2):673-87. PubMed ID: 16774763
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of humidification of reactive gases on the performance of a proton exchange membrane fuel cell.
    Wilberforce T; Ijaodola O; Khatib FN; Ogungbemi EO; El Hassan Z; Thompson J; Olabi AG
    Sci Total Environ; 2019 Oct; 688():1016-1035. PubMed ID: 31726535
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells.
    Oh SE; Logan BE
    Appl Microbiol Biotechnol; 2006 Mar; 70(2):162-9. PubMed ID: 16167143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modelling the Proton-Conductive Membrane in Practical Polymer Electrolyte Membrane Fuel Cell (PEMFC) Simulation: A Review.
    Dickinson EJF; Smith G
    Membranes (Basel); 2020 Oct; 10(11):. PubMed ID: 33126688
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantifying phosphoric acid in high-temperature polymer electrolyte fuel cell components by X-ray tomographic microscopy.
    Eberhardt SH; Marone F; Stampanoni M; Büchi FN; Schmidt TJ
    J Synchrotron Radiat; 2014 Nov; 21(Pt 6):1319-26. PubMed ID: 25343801
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molded, high surface area polymer electrolyte membranes from cured liquid precursors.
    Zhou Z; Dominey RN; Rolland JP; Maynor BW; Pandya AA; DeSimone JM
    J Am Chem Soc; 2006 Oct; 128(39):12963-72. PubMed ID: 17002393
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nuclear magnetic resonance of polymer electrolyte membrane fuel cells.
    Suarez S; Greenbaum S
    Chem Rec; 2010 Dec; 10(6):377-93. PubMed ID: 20648522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A class of non-precious metal composite catalysts for fuel cells.
    Bashyam R; Zelenay P
    Nature; 2006 Sep; 443(7107):63-6. PubMed ID: 16957726
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.