BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 20964370)

  • 1. β-propeller phytase hydrolyzes insoluble Ca(2+)-phytate salts and completely abrogates the ability of phytate to chelate metal ions.
    Kim OH; Kim YO; Shim JH; Jung YS; Jung WJ; Choi WC; Lee H; Lee SJ; Kim KK; Auh JH; Kim H; Kim JW; Oh TK; Oh BC
    Biochemistry; 2010 Nov; 49(47):10216-27. PubMed ID: 20964370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular and biochemical characteristics of β-propeller phytase from marine Pseudomonas sp. BS10-3 and its potential application for animal feed additives.
    Nam SJ; Kim YO; Ko TK; Kang JK; Chun KH; Auh JH; Lee CS; Lee IK; Park S; Oh BC
    J Microbiol Biotechnol; 2014 Oct; 24(10):1413-20. PubMed ID: 25112322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca(2+)-inositol phosphate chelation mediates the substrate specificity of beta-propeller phytase.
    Oh BC; Kim MH; Yun BS; Choi WC; Park SC; Bae SC; Oh TK
    Biochemistry; 2006 Aug; 45(31):9531-9. PubMed ID: 16878987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of a novel, thermostable phytase in partially and fully calcium-loaded states.
    Ha NC; Oh BC; Shin S; Kim HJ; Oh TK; Kim YO; Choi KY; Oh BH
    Nat Struct Biol; 2000 Feb; 7(2):147-53. PubMed ID: 10655618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical properties and substrate specificities of alkaline and histidine acid phytases.
    Oh BC; Choi WC; Park S; Kim YO; Oh TK
    Appl Microbiol Biotechnol; 2004 Jan; 63(4):362-72. PubMed ID: 14586576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of Bacillus alkaline phytase in complex with divalent metal ions and inositol hexasulfate.
    Zeng YF; Ko TP; Lai HL; Cheng YS; Wu TH; Ma Y; Chen CC; Yang CS; Cheng KJ; Huang CH; Guo RT; Liu JR
    J Mol Biol; 2011 Jun; 409(2):214-24. PubMed ID: 21463636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermostable alkaline phytase from Bacillus sp. MD2: effect of divalent metals on activity and stability.
    Tran TT; Hashim SO; Gaber Y; Mamo G; Mattiasson B; Hatti-Kaul R
    J Inorg Biochem; 2011 Jul; 105(7):1000-7. PubMed ID: 21569752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and application of calcium-dependent β-propeller phytase from Bacillus amyloliquefaciens DS11.
    Shim JH; Oh BC
    J Agric Food Chem; 2012 Aug; 60(30):7532-7. PubMed ID: 22775008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathway of phytate dephosphorylation by beta-propeller phytases of different origins.
    Greiner R; Lim BL; Cheng C; Carlsson NG
    Can J Microbiol; 2007 Apr; 53(4):488-95. PubMed ID: 17612603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple and fast kinetic assay for phytases using phytic acid-protein complex as substrate.
    Tran TT; Hatti-Kaul R; Dalsgaard S; Yu S
    Anal Biochem; 2011 Mar; 410(2):177-84. PubMed ID: 21050837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-dependent catalytic activity of a novel phytase from Bacillus amyloliquefaciens DS11.
    Oh BC; Chang BS; Park KH; Ha NC; Kim HK; Oh BH; Oh TK
    Biochemistry; 2001 Aug; 40(32):9669-76. PubMed ID: 11583167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of the catalytic properties of Aspergillus fumigatus phytase based on the three-dimensional structure.
    Tomschy A; Tessier M; Wyss M; Brugger R; Broger C; Schnoebelen L; van Loon AP; Pasamontes L
    Protein Sci; 2000 Jul; 9(7):1304-11. PubMed ID: 10933495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The tandemly repeated domains of a β-propeller phytase act synergistically to increase catalytic efficiency.
    Li Z; Huang H; Yang P; Yuan T; Shi P; Zhao J; Meng K; Yao B
    FEBS J; 2011 Sep; 278(17):3032-40. PubMed ID: 21707924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Phytase on in Vitro Hydrolysis of Phytate and the Formation of
    Hirvonen J; Liljavirta J; Saarinen MT; Lehtinen MJ; Ahonen I; Nurminen P
    J Agric Food Chem; 2019 Oct; 67(41):11396-11402. PubMed ID: 31537068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures of Selenomonas ruminantium phytase in complex with persulfated phytate: DSP phytase fold and mechanism for sequential substrate hydrolysis.
    Chu HM; Guo RT; Lin TW; Chou CC; Shr HL; Lai HL; Tang TY; Cheng KJ; Selinger BL; Wang AH
    Structure; 2004 Nov; 12(11):2015-24. PubMed ID: 15530366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of phytate globoids isolated from wheat bran and characterization of their sequential dephosphorylation by wheat phytase.
    Bohn L; Josefsen L; Meyer AS; Rasmussen SK
    J Agric Food Chem; 2007 Sep; 55(18):7547-52. PubMed ID: 17696444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of a phytase from Klebsiella terrigena.
    Greiner R; Haller E; Konietzny U; Jany KD
    Arch Biochem Biophys; 1997 May; 341(2):201-6. PubMed ID: 9169005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of Escherichia coli phytase and its complex with phytate.
    Lim D; Golovan S; Forsberg CW; Jia Z
    Nat Struct Biol; 2000 Feb; 7(2):108-13. PubMed ID: 10655611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beta-propeller phytases in the aquatic environment.
    Cheng C; Lim BL
    Arch Microbiol; 2006 Mar; 185(1):1-13. PubMed ID: 16402222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme mechanism and catalytic property of beta propeller phytase.
    Shin S; Ha NC; Oh BC; Oh TK; Oh BH
    Structure; 2001 Sep; 9(9):851-8. PubMed ID: 11566134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.