These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
27. Frustrated magnetism in the S = 1 kagomé lattice BaNi3(OH)2(VO4)2. Freedman DE; Chisnell R; McQueen TM; Lee YS; Payen C; Nocera DG Chem Commun (Camb); 2012 Jan; 48(1):64-6. PubMed ID: 22057030 [TBL] [Abstract][Full Text] [Related]
28. Role of the spin magnitude of the magnetic ion in determining the frustration and low-temperature properties of kagome lattices. Pati SK; Rao CN J Chem Phys; 2005 Dec; 123(23):234703. PubMed ID: 16392940 [TBL] [Abstract][Full Text] [Related]
29. Mononuclear [(BP)(2)MX](n+) (M = Cu(2+), Co(2+), Zn(2+); X = OH(2), Cl(-)) complexes with a new biphenyl appended N-bidentate ligand: structural, spectroscopic, solution equilibrium and ligand dynamic studies. Sabiah S; Varghese B; Murthy NN Dalton Trans; 2009 Nov; (44):9770-80. PubMed ID: 19885522 [TBL] [Abstract][Full Text] [Related]
31. Symmetry Reduction in the Quantum Kagome Antiferromagnet Herbertsmithite. Zorko A; Herak M; Gomilšek M; van Tol J; Velázquez M; Khuntia P; Bert F; Mendels P Phys Rev Lett; 2017 Jan; 118(1):017202. PubMed ID: 28106444 [TBL] [Abstract][Full Text] [Related]
32. Syntheses and magnetostructural investigations on Kuratowski-type homo- and heteropentanuclear coordination compounds [MZn4Cl4(L)6] (M(II) = Zn, Fe, Co, Ni, or Cu; L = 5,6-dimethyl-1,2,3-benzotriazolate) represented by the nonplanar K(3,3) graph. Biswas S; Tonigold M; Speldrich M; Kögerler P; Weil M; Volkmer D Inorg Chem; 2010 Aug; 49(16):7424-34. PubMed ID: 20690751 [TBL] [Abstract][Full Text] [Related]
33. Orbital switching in a frustrated magnet. Yoshida H; Yamaura J; Isobe M; Okamoto Y; Nilsen GJ; Hiroi Z Nat Commun; 2012 May; 3():860. PubMed ID: 22643887 [TBL] [Abstract][Full Text] [Related]
34. Low-temperature behaviors of the dipolar magnet Dy Jiang CY; Wang Y; Ding ZF; Shu L J Phys Condens Matter; 2024 May; 36(31):. PubMed ID: 38655737 [TBL] [Abstract][Full Text] [Related]
35. Origin of Magnetic Ordering in a Structurally Perfect Quantum Kagome Antiferromagnet. Arh T; Gomilšek M; Prelovšek P; Pregelj M; Klanjšek M; Ozarowski A; Clark SJ; Lancaster T; Sun W; Mi JX; Zorko A Phys Rev Lett; 2020 Jul; 125(2):027203. PubMed ID: 32701346 [TBL] [Abstract][Full Text] [Related]
36. Synthesis, structure and magnetism of the new S = 1 kagome magnet NH Connolly ET; Reeves P; Boldrin D; Wills AS J Phys Condens Matter; 2018 Jan; 30(2):025801. PubMed ID: 29226845 [TBL] [Abstract][Full Text] [Related]
37. High-Pressure Induced Continuous Structural Evolution of Kagome Antiferromagnet MgMn Yang X; Xu T; Zhang J; Cui H; Jiang L; Ma Y; Cui Q Inorg Chem; 2024 Jul; 63(27):12445-12456. PubMed ID: 38820063 [TBL] [Abstract][Full Text] [Related]
38. Gapless spin liquid ground state in the S = 1/2 vanadium oxyfluoride kagome antiferromagnet [NH4]2[C7H14N][V7O6F18]. Clark L; Orain JC; Bert F; De Vries MA; Aidoudi FH; Morris RE; Lightfoot P; Lord JS; Telling MT; Bonville P; Attfield JP; Mendels P; Harrison A Phys Rev Lett; 2013 May; 110(20):207208. PubMed ID: 25167449 [TBL] [Abstract][Full Text] [Related]
39. Spin waves in the frustrated kagomé lattice antiferromagnet KFe3(OH)6(SO4)2. Matan K; Grohol D; Nocera DG; Yildirim T; Harris AB; Lee SH; Nagler SE; Lee YS Phys Rev Lett; 2006 Jun; 96(24):247201. PubMed ID: 16907274 [TBL] [Abstract][Full Text] [Related]
40. Synthesis, characterization, and ligand exchange reactivity of a series of first row divalent metal 3-hydroxyflavonolate complexes. Grubel K; Rudzka K; Arif AM; Klotz KL; Halfen JA; Berreau LM Inorg Chem; 2010 Jan; 49(1):82-96. PubMed ID: 19954165 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]