BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 20964430)

  • 1. Vibrational Stark effect spectroscopy at the interface of Ras and Rap1A bound to the Ras binding domain of RalGDS reveals an electrostatic mechanism for protein-protein interaction.
    Stafford AJ; Ensign DL; Webb LJ
    J Phys Chem B; 2010 Nov; 114(46):15331-44. PubMed ID: 20964430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrational Stark effect spectroscopy reveals complementary electrostatic fields created by protein-protein binding at the interface of Ras and Ral.
    Walker DM; Hayes EC; Webb LJ
    Phys Chem Chem Phys; 2013 Aug; 15(29):12241-52. PubMed ID: 23771025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatic effects of mutations of Ras glutamine 61 measured using vibrational spectroscopy of a thiocyanate probe.
    Stafford AJ; Walker DM; Webb LJ
    Biochemistry; 2012 Apr; 51(13):2757-67. PubMed ID: 22385209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved electrostatic fields at the Ras-effector interface measured through vibrational Stark effect spectroscopy explain the difference in tilt angle in the Ras binding domains of Raf and RalGDS.
    Walker DM; Wang R; Webb LJ
    Phys Chem Chem Phys; 2014 Oct; 16(37):20047-60. PubMed ID: 25127074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of electrostatics in differential binding of RalGDS to Rap mutations E30D and K31E investigated by vibrational spectroscopy of thiocyanate probes.
    Ragain CM; Newberry RW; Ritchie AW; Webb LJ
    J Phys Chem B; 2012 Aug; 116(31):9326-36. PubMed ID: 22738401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors determining electrostatic fields in molecular dynamics simulations of the Ras/effector interface.
    Ensign DL; Webb LJ
    Proteins; 2011 Dec; 79(12):3511-24. PubMed ID: 21748802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A detailed thermodynamic analysis of ras/effector complex interfaces.
    Kiel C; Serrano L; Herrmann C
    J Mol Biol; 2004 Jul; 340(5):1039-58. PubMed ID: 15236966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double-mutant analysis of the interaction of Ras with the Ras-binding domain of RGL.
    Shirouzu M; Hashimoto K; Kikuchi A; Yokoyama S
    Biochemistry; 1999 Apr; 38(16):5103-10. PubMed ID: 10213614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure-induced local unfolding of the Ras binding domain of RalGDS.
    Inoue K; Yamada H; Akasaka K; Herrmann C; Kremer W; Maurer T; Döker R; Kalbitzer HR
    Nat Struct Biol; 2000 Jul; 7(7):547-50. PubMed ID: 10876238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. COMBINE analysis of the specificity of binding of Ras proteins to their effectors.
    Tomić S; Bertosa B; Wang T; Wade RC
    Proteins; 2007 May; 67(2):435-47. PubMed ID: 17295314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing electrostatic field calculations with the adaptive Poisson-Boltzmann Solver to predict electric fields at protein-protein interfaces. I. Sampling and focusing.
    Ritchie AW; Webb LJ
    J Phys Chem B; 2013 Oct; 117(39):11473-89. PubMed ID: 24041016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma membrane recruitment of RalGDS is critical for Ras-dependent Ral activation.
    Matsubara K; Kishida S; Matsuura Y; Kitayama H; Noda M; Kikuchi A
    Oncogene; 1999 Feb; 18(6):1303-12. PubMed ID: 10022812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure determination of the Ras-binding domain of the Ral-specific guanine nucleotide exchange factor Rlf.
    Esser D; Bauer B; Wolthuis RM; Wittinghofer A; Cool RH; Bayer P
    Biochemistry; 1998 Sep; 37(39):13453-62. PubMed ID: 9753431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Rgl3 as a potential binding partner for Rap-family small G-proteins and profilin II.
    Xu J; Shi S; Matsumoto N; Noda M; Kitayama H
    Cell Signal; 2007 Jul; 19(7):1575-82. PubMed ID: 17382517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RalGDS-like factor (Rlf) is a novel Ras and Rap 1A-associating protein.
    Wolthuis RM; Bauer B; van 't Veer LJ; de Vries-Smits AM; Cool RH; Spaargaren M; Wittinghofer A; Burgering BM; Bos JL
    Oncogene; 1996 Jul; 13(2):353-62. PubMed ID: 8710374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colocalization of Ras and Ral on the membrane is required for Ras-dependent Ral activation through Ral GDP dissociation stimulator.
    Kishida S; Koyama S; Matsubara K; Kishida M; Matsuura Y; Kikuchi A
    Oncogene; 1997 Dec; 15(24):2899-907. PubMed ID: 9416833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The activation of RalGDS can be achieved independently of its Ras binding domain. Implications of an activation mechanism in Ras effector specificity and signal distribution.
    Linnemann T; Kiel C; Herter P; Herrmann C
    J Biol Chem; 2002 Mar; 277(10):7831-7. PubMed ID: 11748241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognizing and defining true Ras binding domains I: biochemical analysis.
    Wohlgemuth S; Kiel C; Krämer A; Serrano L; Wittinghofer F; Herrmann C
    J Mol Biol; 2005 May; 348(3):741-58. PubMed ID: 15826668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes.
    Gohlke H; Kiel C; Case DA
    J Mol Biol; 2003 Jul; 330(4):891-913. PubMed ID: 12850155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear magnetic resonance and molecular dynamics studies on the interactions of the Ras-binding domain of Raf-1 with wild-type and mutant Ras proteins.
    Terada T; Ito Y; Shirouzu M; Tateno M; Hashimoto K; Kigawa T; Ebisuzaki T; Takio K; Shibata T; Yokoyama S; Smith BO; Laue ED; Cooper JA
    J Mol Biol; 1999 Feb; 286(1):219-32. PubMed ID: 9931261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.