BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 20964432)

  • 1. Use of surface plasmon resonance (SPR) to study the dissociation and polysaccharide binding of casein micelles and caseins.
    Thompson AK; Singh H; Dalgleish DG
    J Agric Food Chem; 2010 Nov; 58(22):11962-8. PubMed ID: 20964432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topography of the casein micelle surface by surface plasmon resonance (SPR) using a selection of specific monoclonal antibodies.
    Dupont D; Johansson A; Marchin S; Rolet-Repecaud O; Marchesseau S; Leonil J
    J Agric Food Chem; 2011 Aug; 59(15):8375-84. PubMed ID: 21740045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Casein interactions studied by the surface plasmon resonance technique.
    Marchesseau S; Mani JC; Martineau P; Roquet F; Cuq JL; Pugnière M
    J Dairy Sci; 2002 Nov; 85(11):2711-21. PubMed ID: 12487438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the interaction between recombinant human myelin basic protein and caseins using surface plasmon resonance and diffusing wave spectroscopy.
    Al-Ghobashy MA; Cucheval A; Williams MA; Laible G; Harding DR
    J Mol Recognit; 2010; 23(1):84-92. PubMed ID: 19856323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of casein micelles with calcium phosphate particles.
    Tercinier L; Ye A; Anema SG; Singh A; Singh H
    J Agric Food Chem; 2014 Jun; 62(25):5983-92. PubMed ID: 24896851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding analysis between monomeric β-casein and hydrophobic bioactive compounds investigated by surface plasmon resonance and fluorescence spectroscopy.
    Bahri A; Henriquet C; Pugnière M; Marchesseau S; Chevalier-Lucia D
    Food Chem; 2019 Jul; 286():289-296. PubMed ID: 30827608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular structure of the casein micelle.
    McMahon DJ; Oommen BS
    J Dairy Sci; 2008 May; 91(5):1709-21. PubMed ID: 18420601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of polysaccharide conformational epitopes by surface plasmon resonance.
    MacKenzie CR; Jennings HJ
    Methods Enzymol; 2003; 363():340-54. PubMed ID: 14579587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of alpha-D-mannopyranoside glycolipid micelles-lectin interactions by surface plasmon resonance method.
    Murthy BN; Voelcker NH; Jayaraman N
    Glycobiology; 2006 Sep; 16(9):822-32. PubMed ID: 16782825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of lactoferrin and lysozyme with casein micelles.
    Anema SG; de Kruif CG
    Biomacromolecules; 2011 Nov; 12(11):3970-6. PubMed ID: 21932853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between adsorbed layers of alphaS1-casein with covalently bound side chains: a self-consistent field study.
    Akinshina A; Ettelaie R; Dickinson E; Smyth G
    Biomacromolecules; 2008 Nov; 9(11):3188-200. PubMed ID: 18928317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alpha casein micelles show not only molecular chaperone-like aggregation inhibition properties but also protein refolding activity from the denatured state.
    Sakono M; Motomura K; Maruyama T; Kamiya N; Goto M
    Biochem Biophys Res Commun; 2011 Jan; 404(1):494-7. PubMed ID: 21144837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative characterization of bovine plasminogen binding to caseins.
    Haïssat S; Marchal E; Montagne P; Humbert G; Béné MC; Faure G; Linden G
    Anal Biochem; 1994 Nov; 222(2):472-8. PubMed ID: 7864375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactose-installed poly(ethylene glycol)-poly(d,l-lactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bed simulating a cell surface. A surface plasmon resonance study.
    Jule E; Nagasaki Y; Kataoka K
    Bioconjug Chem; 2003; 14(1):177-86. PubMed ID: 12526707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reformation of casein particles from alkaline-disrupted casein micelles.
    Huppertz T; Vaia B; Smiddy MA
    J Dairy Res; 2008 Feb; 75(1):44-7. PubMed ID: 18226300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring binding kinetics of surface-bound molecules using the surface plasmon resonance technique.
    Li B; Chen J; Long M
    Anal Biochem; 2008 Jun; 377(2):195-201. PubMed ID: 18384740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent labeling study of plasminogen concentration and location in simulated bovine milk systems.
    Wang L; Hayes KD; Mauer LJ
    J Dairy Sci; 2006 Jan; 89(1):58-70. PubMed ID: 16357268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption and reassociation of casein micelles during high pressure treatment: influence of whey proteins.
    Huppertz T; de Kruif CG
    J Dairy Res; 2007 May; 74(2):194-7. PubMed ID: 17291391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling protein binding and elution over a chromatographic surface probed by surface plasmon resonance.
    Vicente T; Mota JP; Peixoto C; Alves PM; Carrondo MJ
    J Chromatogr A; 2010 Mar; 1217(13):2032-41. PubMed ID: 20171645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct measurements of interfacial interactions between pectin and kappa-casein and implications for the stabilisation of calcium-free casein micelle mimics.
    Cucheval A; Al-Ghobashy MA; Hemar Y; Otter D; Williams MA
    J Colloid Interface Sci; 2009 Oct; 338(2):450-62. PubMed ID: 19628212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.