These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 20964444)

  • 1. Effect of temperature on the self-assembly of the Escherichia coli ClpA molecular chaperone.
    Veronese PK; Lucius AL
    Biochemistry; 2010 Nov; 49(45):9820-9. PubMed ID: 20964444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Escherichia coli ClpA molecular chaperone self-assembles into tetramers.
    Veronese PK; Stafford RP; Lucius AL
    Biochemistry; 2009 Oct; 48(39):9221-33. PubMed ID: 19650643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular properties of ClpAP protease of Escherichia coli: ATP-dependent association of ClpA and clpP.
    Maurizi MR; Singh SK; Thompson MW; Kessel M; Ginsburg A
    Biochemistry; 1998 May; 37(21):7778-86. PubMed ID: 9601038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examination of the nucleotide-linked assembly mechanism of E. coli ClpA.
    Duran EC; Lucius AL
    Protein Sci; 2019 Jul; 28(7):1312-1323. PubMed ID: 31054177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An intrinsic degradation tag on the ClpA C-terminus regulates the balance of ClpAP complexes with different substrate specificity.
    Maglica Z; Striebel F; Weber-Ban E
    J Mol Biol; 2008 Dec; 384(2):503-11. PubMed ID: 18835567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanism of polypeptide translocation catalyzed by the Escherichia coli ClpA protein translocase.
    Rajendar B; Lucius AL
    J Mol Biol; 2010 Jun; 399(5):665-79. PubMed ID: 20380838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP hydrolysis inactivating Walker B mutation perturbs E. coli ClpA self-assembly energetics in the absence of nucleotide.
    Duran EC; Lucius AL
    Biophys Chem; 2018 Nov; 242():6-14. PubMed ID: 30173103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal efficiency of ClpAP and ClpXP chaperone-proteases is achieved by architectural symmetry.
    Maglica Z; Kolygo K; Weber-Ban E
    Structure; 2009 Apr; 17(4):508-16. PubMed ID: 19368884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly pathway of an AAA+ protein: tracking ClpA and ClpAP complex formation in real time.
    Kress W; Mutschler H; Weber-Ban E
    Biochemistry; 2007 May; 46(21):6183-93. PubMed ID: 17477547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. E. coli ClpA catalyzed polypeptide translocation is allosterically controlled by the protease ClpP.
    Miller JM; Lin J; Li T; Lucius AL
    J Mol Biol; 2013 Aug; 425(15):2795-812. PubMed ID: 23639359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. At sixes and sevens: characterization of the symmetry mismatch of the ClpAP chaperone-assisted protease.
    Beuron F; Maurizi MR; Belnap DM; Kocsis E; Booy FP; Kessel M; Steven AC
    J Struct Biol; 1998 Nov; 123(3):248-59. PubMed ID: 9878579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity of E. coli ClpA bound by nucleoside diphosphates and triphosphates.
    Veronese PK; Rajendar B; Lucius AL
    J Mol Biol; 2011 Jun; 409(3):333-47. PubMed ID: 21376057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Linked Equilibria.
    Lin J; Lucius AL
    Methods Enzymol; 2015; 562():161-86. PubMed ID: 26412651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homology in structural organization between E. coli ClpAP protease and the eukaryotic 26 S proteasome.
    Kessel M; Maurizi MR; Kim B; Kocsis E; Trus BL; Singh SK; Steven AC
    J Mol Biol; 1995 Jul; 250(5):587-94. PubMed ID: 7623377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ClpP hydrolyzes a protein substrate processively in the absence of the ClpA ATPase: mechanistic studies of ATP-independent proteolysis.
    Jennings LD; Lun DS; Médard M; Licht S
    Biochemistry; 2008 Nov; 47(44):11536-46. PubMed ID: 18839965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic light scattering to study allosteric regulation.
    Lucius AL; Veronese PK; Stafford RP
    Methods Mol Biol; 2012; 796():175-86. PubMed ID: 22052490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ClpA and ClpX ATPases bind simultaneously to opposite ends of ClpP peptidase to form active hybrid complexes.
    Ortega J; Lee HS; Maurizi MR; Steven AC
    J Struct Biol; 2004; 146(1-2):217-26. PubMed ID: 15037252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protease Ti (Clp), a multi-component ATP-dependent protease in Escherichia coli.
    Chung CH; Seol JH; Kang MS
    Biol Chem; 1996 Sep; 377(9):549-54. PubMed ID: 9067252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examination of the polypeptide substrate specificity for Escherichia coli ClpA.
    Li T; Lucius AL
    Biochemistry; 2013 Jul; 52(29):4941-54. PubMed ID: 23773038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-directed mutagenesis of the Cys residues in ClpA, the ATPase component of protease Ti (ClpAP) in Escherichia coli.
    Seol JH; Kwon JA; Yoo SJ; Kim HS; Kang MS; Chung CH
    Biol Chem; 1997 Oct; 378(10):1205-9. PubMed ID: 9372193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.