These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 20964858)

  • 81. Electrocardiographic changes during exercise in acute hypoxia and susceptibility to severe high-altitude illnesses.
    Coustet B; Lhuissier FJ; Vincent R; Richalet JP
    Circulation; 2015 Mar; 131(9):786-94. PubMed ID: 25561515
    [TBL] [Abstract][Full Text] [Related]  

  • 82. [Respiratory response to chemical stimuli and exercise capacity under conditions of acute hypoxia in elite mountain climbers].
    Montserrat JM; Ricard T; Mateu M; Roca J; Rodríguez-Roisín R
    Rev Esp Fisiol; 1991 Dec; 47(4):193-9. PubMed ID: 1812541
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Repeated Wingate sprints is a feasible high-quality training strategy in moderate hypoxia.
    Breenfeldt Andersen A; Bejder J; Bonne T; Olsen NV; Nordsborg N
    PLoS One; 2020; 15(11):e0242439. PubMed ID: 33186393
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Long-term stay at low altitude (1,200 m) promotes better hypoxia adaptation and performance.
    Singh K; Gupta RK; Soree P; Rai L; Himashree G
    Indian J Physiol Pharmacol; 2014; 58(4):376-80. PubMed ID: 26215004
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Exercise-induced cerebral deoxygenation among untrained trekkers at moderate altitudes.
    Saito S; Nishihara F; Takazawa T; Kanai M; Aso C; Shiga T; Shimada H
    Arch Environ Health; 1999; 54(4):271-6. PubMed ID: 10433186
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Linear decrease in .VO2max and performance with increasing altitude in endurance athletes.
    Wehrlin JP; Hallén J
    Eur J Appl Physiol; 2006 Mar; 96(4):404-12. PubMed ID: 16311764
    [TBL] [Abstract][Full Text] [Related]  

  • 87. 1984 Armstrong lecture. Hypoxic man: lessons from extreme altitude.
    West JB
    Aviat Space Environ Med; 1984 Nov; 55(11):1058-62. PubMed ID: 6439182
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Effect of hypobaric hypoxia on heart rate variability during exercise: a pilot field study.
    Zupet P; Princi T; Finderle Z
    Eur J Appl Physiol; 2009 Oct; 107(3):345-50. PubMed ID: 19629516
    [TBL] [Abstract][Full Text] [Related]  

  • 89. High-intensity kayak performance after adaptation to intermittent hypoxia.
    Bonetti DL; Hopkins WG; Kilding AE
    Int J Sports Physiol Perform; 2006 Sep; 1(3):246-60. PubMed ID: 19116438
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The role of nitrogen oxides in human adaptation to hypoxia.
    Levett DZ; Fernandez BO; Riley HL; Martin DS; Mitchell K; Leckstrom CA; Ince C; Whipp BJ; Mythen MG; Montgomery HE; Grocott MP; Feelisch M;
    Sci Rep; 2011; 1():109. PubMed ID: 22355626
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Interaction between hypoxia and training on NIRS signal during exercise: contribution of a mathematical model.
    Bourdillon N; Mollard P; Letournel M; Beaudry M; Richalet JP
    Respir Physiol Neurobiol; 2009 Oct; 169(1):50-61. PubMed ID: 19712759
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Seven intermittent exposures to altitude improves exercise performance at 4300 m.
    Beidleman BA; Muza SR; Fulco CS; Cymerman A; Sawka MN; Lewis SF; Skrinar GS
    Med Sci Sports Exerc; 2008 Jan; 40(1):141-8. PubMed ID: 18091011
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Relationship of hypoxic ventilatory response to exercise performance on Mount Everest.
    Schoene RB; Lahiri S; Hackett PH; Peters RM; Milledge JS; Pizzo CJ; Sarnquist FH; Boyer SJ; Graber DJ; Maret KH
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Jun; 56(6):1478-83. PubMed ID: 6735806
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Oxygen therapy in critical illness: precise control of arterial oxygenation and permissive hypoxemia.
    Martin DS; Grocott MP
    Crit Care Med; 2013 Feb; 41(2):423-32. PubMed ID: 23263574
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Concepts in hypoxia reborn.
    Martin DS; Khosravi M; Grocott MP; Mythen MG
    Crit Care; 2010; 14(4):315. PubMed ID: 20727228
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Peak heart rates at extreme altitudes.
    Lundby C; van Hall G
    High Alt Med Biol; 2001; 2(1):41-5. PubMed ID: 11252697
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Association of EGLN1 genetic polymorphisms with SpO
    Yasukochi Y; Nishimura T; Motoi M; Watanuki S
    J Physiol Anthropol; 2018 Apr; 37(1):9. PubMed ID: 29625625
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Our ancestral physiological phenotype: an adaptation for hypoxia tolerance and for endurance performance?
    Hochachka PW; Gunga HC; Kirsch K
    Proc Natl Acad Sci U S A; 1998 Feb; 95(4):1915-20. PubMed ID: 9465117
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Effects of exercise stress on the endocannabinoid system in humans under field conditions.
    Feuerecker M; Hauer D; Toth R; Demetz F; Hölzl J; Thiel M; Kaufmann I; Schelling G; Choukèr A
    Eur J Appl Physiol; 2012 Jul; 112(7):2777-81. PubMed ID: 22101870
    [TBL] [Abstract][Full Text] [Related]  

  • 100. OxInflammation at High Altitudes: A Proof of Concept from the Himalayas.
    Mrakic-Sposta S; Biagini D; Bondi D; Pietrangelo T; Vezzoli A; Lomonaco T; Di Francesco F; Verratti V
    Antioxidants (Basel); 2022 Feb; 11(2):. PubMed ID: 35204250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.