These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Inhibition of yeast-to-hypha transition in Candida albicans by phorbasin H isolated from Phorbas sp. Lee SH; Jeon JE; Ahn CH; Chung SC; Shin J; Oh KB Appl Microbiol Biotechnol; 2013 Apr; 97(7):3141-8. PubMed ID: 23229567 [TBL] [Abstract][Full Text] [Related]
7. Ras1-induced hyphal development in Candida albicans requires the formin Bni1. Martin R; Walther A; Wendland J Eukaryot Cell; 2005 Oct; 4(10):1712-24. PubMed ID: 16215178 [TBL] [Abstract][Full Text] [Related]
8. The formin family protein CaBni1p has a role in cell polarity control during both yeast and hyphal growth in Candida albicans. Li CR; Wang YM; De Zheng X; Liang HY; Tang JC; Wang Y J Cell Sci; 2005 Jun; 118(Pt 12):2637-48. PubMed ID: 15914538 [TBL] [Abstract][Full Text] [Related]
9. Antagonistic interplay of Swi1 and Tup1 on filamentous growth of Candida albicans. Mao X; Li Y; Wang H; Cao F; Chen J FEMS Microbiol Lett; 2008 Aug; 285(2):233-41. PubMed ID: 18564337 [TBL] [Abstract][Full Text] [Related]
10. Boric acid destabilizes the hyphal cytoskeleton and inhibits invasive growth of Candida albicans. Pointer BR; Boyer MP; Schmidt M Yeast; 2015 Apr; 32(4):389-98. PubMed ID: 25612315 [TBL] [Abstract][Full Text] [Related]
11. Relationship between cell morphology and intracellular potassium concentration in Candida albicans. Watanabe H; Azuma M; Igarashi K; Ooshima H J Antibiot (Tokyo); 2006 May; 59(5):281-7. PubMed ID: 16883777 [TBL] [Abstract][Full Text] [Related]
12. Asc1, a WD-repeat protein, is required for hyphal development and virulence in Candida albicans. Liu X; Nie X; Ding Y; Chen J Acta Biochim Biophys Sin (Shanghai); 2010 Nov; 42(11):793-800. PubMed ID: 20929924 [TBL] [Abstract][Full Text] [Related]
13. Iron deprivation induces EFG1-mediated hyphal development in Candida albicans without affecting biofilm formation. Hameed S; Prasad T; Banerjee D; Chandra A; Mukhopadhyay CK; Goswami SK; Lattif AA; Chandra J; Mukherjee PK; Ghannoum MA; Prasad R FEMS Yeast Res; 2008 Aug; 8(5):744-55. PubMed ID: 18547332 [TBL] [Abstract][Full Text] [Related]
14. RA domain-mediated interaction of Cdc35 with Ras1 is essential for increasing cellular cAMP level for Candida albicans hyphal development. Fang HM; Wang Y Mol Microbiol; 2006 Jul; 61(2):484-96. PubMed ID: 16856944 [TBL] [Abstract][Full Text] [Related]
15. Effect of filamentation and mode of growth on antifungal susceptibility of Candida albicans. Watamoto T; Samaranayake LP; Jayatilake JA; Egusa H; Yatani H; Seneviratne CJ Int J Antimicrob Agents; 2009 Oct; 34(4):333-9. PubMed ID: 19376687 [TBL] [Abstract][Full Text] [Related]
16. Role of CaBud6p in the polarized growth of Candida albicans. Song Y; Kim JY J Microbiol; 2006 Jun; 44(3):311-9. PubMed ID: 16820761 [TBL] [Abstract][Full Text] [Related]
17. Roles of Zinc-responsive transcription factor Csr1 in filamentous growth of the pathogenic Yeast Candida albicans. Kim MJ; Kil M; Jung JH; Kim J J Microbiol Biotechnol; 2008 Feb; 18(2):242-7. PubMed ID: 18309267 [TBL] [Abstract][Full Text] [Related]
18. Candida albicans hyphal morphogenesis occurs in Sec3p-independent and Sec3p-dependent phases separated by septin ring formation. Li CR; Lee RT; Wang YM; Zheng XD; Wang Y J Cell Sci; 2007 Jun; 120(Pt 11):1898-907. PubMed ID: 17504812 [TBL] [Abstract][Full Text] [Related]
19. Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p-regulatory networks. Setiadi ER; Doedt T; Cottier F; Noffz C; Ernst JF J Mol Biol; 2006 Aug; 361(3):399-411. PubMed ID: 16854431 [TBL] [Abstract][Full Text] [Related]
20. Accumulation of P-bodies in Candida albicans under different stress and filamentous growth conditions. Jung JH; Kim J Fungal Genet Biol; 2011 Dec; 48(12):1116-23. PubMed ID: 22056521 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]