These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 20965440)

  • 1. Evaluation of the genetic trend of milk yield in the multiple ovulation and embryo transfer populations of dairy cows, using stochastic simulation.
    Hossein-Zadeh NG
    C R Biol; 2010 Oct; 333(10):710-5. PubMed ID: 20965440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic modeling of multiple ovulation and embryo transfer breeding schemes in small closed dairy cattle populations.
    Jeon GJ; Mao IL; Jensen J; Ferris TA
    J Dairy Sci; 1990 Jul; 73(7):1938-44. PubMed ID: 2229596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic trend for milk yield in Guzerat herds participating in progeny testing and MOET nucleus schemes.
    Peixoto MG; Verneque RS; Teodoro RL; Penna VM; Martinez ML
    Genet Mol Res; 2006 Jul; 5(3):454-65. PubMed ID: 17117360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of closed adult nucleus multiple ovulation and embryo transfer and conventional progeny testing breeding schemes for milk production in tropical crossbred cattle.
    Kosgey IS; Kahi AK; Van Arendonk JA
    J Dairy Sci; 2005 Apr; 88(4):1582-94. PubMed ID: 15778328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of variability in response to superovulation on donor cow selection differentials in nucleus breeding schemes.
    Keller DS; Teepker G
    J Dairy Sci; 1990 Feb; 73(2):549-54. PubMed ID: 2329209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximizing genetic response in breeding schemes of dairy cattle with constraints on variance of response.
    Meuwissen TH; Woolliams JA
    J Dairy Sci; 1994 Jul; 77(7):1905-16. PubMed ID: 7929952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Major advances in globalization and consolidation of the artificial insemination industry.
    Funk DA
    J Dairy Sci; 2006 Apr; 89(4):1362-8. PubMed ID: 16537967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic gain in dairy cattle populations is increased using sexed semen in commercial herds.
    Sørensen MK; Voergaard J; Pedersen LD; Berg P; Sørensen AC
    J Anim Breed Genet; 2011 Aug; 128(4):267-75. PubMed ID: 21749473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation study on the efficiencies of MOET nucleus breeding schemes applying marker assisted selection in dairy cattle.
    Luo W; Wang Y; Zhang Y
    Sci China C Life Sci; 2009 Mar; 52(3):296-306. PubMed ID: 19294355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of breeding programs to capitalize on reproductive technology for genetic improvement.
    Dekkers JC
    J Dairy Sci; 1992 Oct; 75(10):2880-91. PubMed ID: 1430490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic analysis of traits affecting the success of embryo transfer in dairy cattle.
    König S; Bosselmann F; von Borstel UU; Simianer H
    J Dairy Sci; 2007 Aug; 90(8):3945-54. PubMed ID: 17639006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between the magnitude of the inbreeding coefficient and milk traits in Holstein and Jersey dairy bull semen used in Brazil.
    Soares MP; Gaya LG; Lorentz LH; Batistel F; Rovadoscki GA; Ticiani E; Zabot V; Di Domenico Q; Madureira AP; Pértile SF
    Genet Mol Res; 2011 Sep; 10(3):1942-7. PubMed ID: 21948756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic selection strategies in dairy cattle breeding programmes: Sexed semen cannot replace multiple ovulation and embryo transfer as superior reproductive technology.
    Pedersen LD; Kargo M; Berg P; Voergaard J; Buch LH; Sørensen AC
    J Anim Breed Genet; 2012 Apr; 129(2):152-63. PubMed ID: 22394237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased genetic gains in sheep, beef and dairy breeding programs from using female reproductive technologies combined with optimal contribution selection and genomic breeding values.
    Granleese T; Clark SA; Swan AA; van der Werf JH
    Genet Sel Evol; 2015 Sep; 47(1):70. PubMed ID: 26370143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deterministic models of breeding scheme designs that incorporate genomic selection.
    Pryce JE; Goddard ME; Raadsma HW; Hayes BJ
    J Dairy Sci; 2010 Nov; 93(11):5455-66. PubMed ID: 20965361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using embryo sexing within closed mixed multiple ovulation and embryo transfer schemes for selection on dairy cattle.
    Colleau JJ
    J Dairy Sci; 1991 Nov; 74(11):3973-84. PubMed ID: 1757636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection responses for clinical mastitis and protein yield in two Norwegian dairy cattle selection experiments.
    Heringstad B; Klemetsdal G; Steine T
    J Dairy Sci; 2003 Sep; 86(9):2990-9. PubMed ID: 14507036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple ovulation and embryo manipulation in the improvement of beef cattle: relative theoretical rates of genetic change.
    Gearheart WW; Smith C; Teepker G
    J Anim Sci; 1989 Nov; 67(11):2863-71. PubMed ID: 2592274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating genomic selection into dairy cattle breeding programmes: a review.
    Bouquet A; Juga J
    Animal; 2013 May; 7(5):705-13. PubMed ID: 23200196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reproductive performance of lactating dairy cows treated with cloprostenol at the time of insemination.
    López-Gatius F; Yániz JL; Santolaria P; Murugavel K; Guijarro R; Calvo E; López-Béjar M
    Theriogenology; 2004 Aug; 62(3-4):677-89. PubMed ID: 15226022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.