These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
366 related articles for article (PubMed ID: 20966090)
1. Glutathione biosynthesis in the yeast pathogens Candida glabrata and Candida albicans: essential in C. glabrata, and essential for virulence in C. albicans. Yadav AK; Desai PR; Rai MN; Kaur R; Ganesan K; Bachhawat AK Microbiology (Reading); 2011 Feb; 157(Pt 2):484-495. PubMed ID: 20966090 [TBL] [Abstract][Full Text] [Related]
2. Analysis of the essentiality of ROM2 genes in the pathogenic yeasts Candida glabrata and Candida albicans using temperature-sensitive mutants. Kanno T; Takekawa D; Miyakawa Y J Appl Microbiol; 2015 Apr; 118(4):851-63. PubMed ID: 25604069 [TBL] [Abstract][Full Text] [Related]
3. Glutathione utilization by Candida albicans requires a functional glutathione degradation (DUG) pathway and OPT7, an unusual member of the oligopeptide transporter family. Desai PR; Thakur A; Ganguli D; Paul S; Morschhäuser J; Bachhawat AK J Biol Chem; 2011 Dec; 286(48):41183-41194. PubMed ID: 21994941 [TBL] [Abstract][Full Text] [Related]
4. Investigation of the function of Candida albicans Als3 by heterologous expression in Candida glabrata. Fu Y; Phan QT; Luo G; Solis NV; Liu Y; Cormack BP; Edwards JE; Ibrahim AS; Filler SG Infect Immun; 2013 Jul; 81(7):2528-35. PubMed ID: 23630968 [TBL] [Abstract][Full Text] [Related]
5. Different consequences of ACE2 and SWI5 gene disruptions for virulence of pathogenic and nonpathogenic yeasts. MacCallum DM; Findon H; Kenny CC; Butler G; Haynes K; Odds FC Infect Immun; 2006 Sep; 74(9):5244-8. PubMed ID: 16926418 [TBL] [Abstract][Full Text] [Related]
6. Role of glutathione in the oxidative stress response in the fungal pathogen Candida glabrata. Gutiérrez-Escobedo G; Orta-Zavalza E; Castaño I; De Las Peñas A Curr Genet; 2013 Aug; 59(3):91-106. PubMed ID: 23455613 [TBL] [Abstract][Full Text] [Related]
7. Comparative virulence of Candida auris with Candida haemulonii, Candida glabrata and Candida albicans in a murine model. Fakhim H; Vaezi A; Dannaoui E; Chowdhary A; Nasiry D; Faeli L; Meis JF; Badali H Mycoses; 2018 Jun; 61(6):377-382. PubMed ID: 29460345 [TBL] [Abstract][Full Text] [Related]
8. Human oral keratinocyte E-cadherin degradation by Candida albicans and Candida glabrata. Pärnänen P; Meurman JH; Samaranayake L; Virtanen I J Oral Pathol Med; 2010 Mar; 39(3):275-8. PubMed ID: 20359311 [TBL] [Abstract][Full Text] [Related]
9. The glyoxylate cycle and alternative carbon metabolism as metabolic adaptation strategies of Candida glabrata: perspectives from Candida albicans and Saccharomyces cerevisiae. Chew SY; Chee WJY; Than LTL J Biomed Sci; 2019 Jul; 26(1):52. PubMed ID: 31301737 [TBL] [Abstract][Full Text] [Related]
10. Differential virulence of Candida glabrata glycosylation mutants. West L; Lowman DW; Mora-Montes HM; Grubb S; Murdoch C; Thornhill MH; Gow NA; Williams D; Haynes K J Biol Chem; 2013 Jul; 288(30):22006-18. PubMed ID: 23720756 [TBL] [Abstract][Full Text] [Related]
11. Disruption of gamma-glutamylcysteine synthetase results in absolute glutathione auxotrophy and apoptosis in Candida albicans. Baek YU; Kim YR; Yim HS; Kang SO FEBS Lett; 2004 Jan; 556(1-3):47-52. PubMed ID: 14706824 [TBL] [Abstract][Full Text] [Related]
12. One small step for a yeast--microevolution within macrophages renders Candida glabrata hypervirulent due to a single point mutation. Brunke S; Seider K; Fischer D; Jacobsen ID; Kasper L; Jablonowski N; Wartenberg A; Bader O; Enache-Angoulvant A; Schaller M; d'Enfert C; Hube B PLoS Pathog; 2014 Oct; 10(10):e1004478. PubMed ID: 25356907 [TBL] [Abstract][Full Text] [Related]
13. High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. Cuéllar-Cruz M; Briones-Martin-del-Campo M; Cañas-Villamar I; Montalvo-Arredondo J; Riego-Ruiz L; Castaño I; De Las Peñas A Eukaryot Cell; 2008 May; 7(5):814-25. PubMed ID: 18375620 [TBL] [Abstract][Full Text] [Related]
14. Comparison of sterol import under aerobic and anaerobic conditions in three fungal species, Candida albicans, Candida glabrata, and Saccharomyces cerevisiae. Zavrel M; Hoot SJ; White TC Eukaryot Cell; 2013 May; 12(5):725-38. PubMed ID: 23475705 [TBL] [Abstract][Full Text] [Related]
15. The oxidative stress response of the opportunistic fungal pathogen Candida glabrata. Briones-Martin-Del-Campo M; Orta-Zavalza E; Juarez-Cepeda J; Gutierrez-Escobedo G; Cañas-Villamar I; Castaño I; De Las Peñas A Rev Iberoam Micol; 2014; 31(1):67-71. PubMed ID: 24270068 [TBL] [Abstract][Full Text] [Related]
16. Candida albicans promotes invasion and colonisation of Candida glabrata in a reconstituted human vaginal epithelium. Alves CT; Wei XQ; Silva S; Azeredo J; Henriques M; Williams DW J Infect; 2014 Oct; 69(4):396-407. PubMed ID: 24924556 [TBL] [Abstract][Full Text] [Related]