BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 2096679)

  • 1. The effect of optode positioning on optical pathlength in near infrared spectroscopy of brain.
    van der Zee P; Arridge SR; Cope M; Delpy DT
    Adv Exp Med Biol; 1990; 277():79-84. PubMed ID: 2096679
    [No Abstract]   [Full Text] [Related]  

  • 2. Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing.
    van der Zee P; Cope M; Arridge SR; Essenpreis M; Potter LA; Edwards AD; Wyatt JS; McCormick DC; Roth SC; Reynolds EO
    Adv Exp Med Biol; 1992; 316():143-53. PubMed ID: 1288074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy.
    Hiraoka M; Firbank M; Essenpreis M; Cope M; Arridge SR; van der Zee P; Delpy DT
    Phys Med Biol; 1993 Dec; 38(12):1859-76. PubMed ID: 8108489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitation of pathlength in optical spectroscopy.
    Delpy DT; Arridge SR; Cope M; Edwards D; Reynolds EO; Richardson CE; Wray S; Wyatt J; van der Zee P
    Adv Exp Med Biol; 1989; 248():41-6. PubMed ID: 2551136
    [No Abstract]   [Full Text] [Related]  

  • 5. The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy.
    Okada E; Firbank M; Delpy DT
    Phys Med Biol; 1995 Dec; 40(12):2093-108. PubMed ID: 8719947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of optode separation on brain penetration in adults.
    Harris DN; Bailey SM; Cowans F; Wertheim D
    Adv Exp Med Biol; 1996; 388():133-5. PubMed ID: 8798803
    [No Abstract]   [Full Text] [Related]  

  • 7. Simulation of the point spread function for light in tissue by a Monte Carlo method.
    Van der Zee P; Delpy DT
    Adv Exp Med Biol; 1987; 215():179-91. PubMed ID: 3673719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media.
    Nomura Y; Hazeki O; Tamura M
    Phys Med Biol; 1997 Jun; 42(6):1009-22. PubMed ID: 9194125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulation of the skin reflectance spectra.
    Meglinski IV; Matcher SJ
    Comput Methods Programs Biomed; 2003 Feb; 70(2):179-86. PubMed ID: 12507793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Krypton filled flashlamp: a possible new light source for near infrared spectroscopy in vivo.
    Essenpreis M; Spahn J; Waidelich W; Versmold HT
    Adv Exp Med Biol; 1990; 277():59-62. PubMed ID: 2096661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous-wave near-infrared spectroscopy using pathlength-independent hypoxia normalization.
    Kennan RP; Behar KL
    J Biomed Opt; 2002 Apr; 7(2):228-35. PubMed ID: 11966308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new approach to functional near-infrared technology.
    Nishimura E; Stautzenberger JP; Robinson W; Downs TH; Downs JH
    IEEE Eng Med Biol Mag; 2007; 26(4):25-9. PubMed ID: 17672228
    [No Abstract]   [Full Text] [Related]  

  • 13. Scattering differentiates Alzheimer disease in vitro.
    Hanlon EB; Perelman LT; Vitkin EI; Greco FA; McKee AC; Kowall NW
    Opt Lett; 2008 Mar; 33(6):624-6. PubMed ID: 18347731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resolution of near infrared time-of-flight brain oxygenation imaging.
    Benaron DA; Stevenson DK
    Adv Exp Med Biol; 1994; 345():609-17. PubMed ID: 8079765
    [No Abstract]   [Full Text] [Related]  

  • 15. Adaptive optics instrumentation in submillimeter/terahertz spectroscopy with a flexible polyvinylidene fluoride cladding hollow waveguide.
    Hidaka T; Ishikawa A; Kojou J; Ikari T; Ishikawa Y; Minamide H; Kudoh A; Nishizawa J; Ito H
    Rev Sci Instrum; 2007 Aug; 78(8):086109. PubMed ID: 17764369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NIRS in adults--effects of increasing optode separation.
    Harris DN; Cowans FM; Wertheim DA; Hamid S
    Adv Exp Med Biol; 1994; 345():837-40. PubMed ID: 8079795
    [No Abstract]   [Full Text] [Related]  

  • 17. Estimation of optical pathlength through tissue from direct time of flight measurement.
    Delpy DT; Cope M; van der Zee P; Arridge S; Wray S; Wyatt J
    Phys Med Biol; 1988 Dec; 33(12):1433-42. PubMed ID: 3237772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential pathlength factor for diffuse photon scattering through tissue by a pulse-response method.
    Ultman JS; Piantadosi CA
    Math Biosci; 1991 Nov; 107(1):73-82. PubMed ID: 1806109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of thermal radiation using regular glass optics and short-wave infrared detectors.
    Yoon HW; Eppeldauer GP
    Opt Express; 2008 Jan; 16(2):937-49. PubMed ID: 18542168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A universal biosensing platform based on optical micro-ring resonators.
    Ramachandran A; Wang S; Clarke J; Ja SJ; Goad D; Wald L; Flood EM; Knobbe E; Hryniewicz JV; Chu ST; Gill D; Chen W; King O; Little BE
    Biosens Bioelectron; 2008 Feb; 23(7):939-44. PubMed ID: 17964774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.