These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 20966916)

  • 1. Chronic optical access through a polished and reinforced thinned skull.
    Drew PJ; Shih AY; Driscoll JD; Knutsen PM; Blinder P; Davalos D; Akassoglou K; Tsai PS; Kleinfeld D
    Nat Methods; 2010 Dec; 7(12):981-4. PubMed ID: 20966916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A polished and reinforced thinned-skull window for long-term imaging of the mouse brain.
    Shih AY; Mateo C; Drew PJ; Tsai PS; Kleinfeld D
    J Vis Exp; 2012 Mar; (61):. PubMed ID: 22433225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice.
    Yang G; Pan F; Parkhurst CN; Grutzendler J; Gan WB
    Nat Protoc; 2010 Feb; 5(2):201-8. PubMed ID: 20134419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intact skull chronic windows for mesoscopic wide-field imaging in awake mice.
    Silasi G; Xiao D; Vanni MP; Chen AC; Murphy TH
    J Neurosci Methods; 2016 Jul; 267():141-9. PubMed ID: 27102043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term in vivo investigation of mouse cerebral microcirculation by fluorescence confocal microscopy in the area of focal ischemia.
    Tomita Y; Kubis N; Calando Y; Tran Dinh A; Méric P; Seylaz J; Pinard E
    J Cereb Blood Flow Metab; 2005 Jul; 25(7):858-67. PubMed ID: 15758950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intravital Imaging of Neuroimmune Interactions Through a Thinned Skull.
    Manglani M; McGavern DB
    Curr Protoc Immunol; 2018 Feb; 120():24.2.1-24.2.12. PubMed ID: 29512146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute CO2-independent vasodilatation of penetrating and pre-capillary arterioles in mouse cerebral parenchyma upon hypoxia revealed by a thinned-skull window method.
    Nakamura T; Kajimura M; Morikawa T; Hattori K; Ishikawa M; Yukutake Y; Uchiyama SI; Suematsu M
    Acta Physiol (Oxf); 2011 Sep; 203(1):187-96. PubMed ID: 21054808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of thinned-skull cranial window to mouse cerebral blood flow imaging using optical microangiography.
    Li Y; Baran U; Wang RK
    PLoS One; 2014; 9(11):e113658. PubMed ID: 25426632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals.
    Frostig RD; Lieke EE; Ts'o DY; Grinvald A
    Proc Natl Acad Sci U S A; 1990 Aug; 87(16):6082-6. PubMed ID: 2117272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical window preparation for two-photon imaging of microglia in mice.
    Nimmerjahn A
    Cold Spring Harb Protoc; 2012 May; 2012(5):. PubMed ID: 22550298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of cranial window types for in vivo two-photon imaging of brain microstructures.
    Isshiki M; Okabe S
    Microscopy (Oxf); 2014 Feb; 63(1):53-63. PubMed ID: 24212360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A large, switchable optical clearing skull window for cerebrovascular imaging.
    Zhang C; Feng W; Zhao Y; Yu T; Li P; Xu T; Luo Q; Zhu D
    Theranostics; 2018; 8(10):2696-2708. PubMed ID: 29774069
    [No Abstract]   [Full Text] [Related]  

  • 13. Awake mouse brain photoacoustic and optical imaging through a transparent ultrasound cranial window.
    Mirg S; Chen H; Turner KL; Gheres KW; Liu J; Gluckman BJ; Drew PJ; Kothapalli SR
    Opt Lett; 2022 Mar; 47(5):1121-1124. PubMed ID: 35230306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcranial two-photon imaging of the living mouse brain.
    Grutzendler J; Yang G; Pan F; Parkhurst CN; Gan WB
    Cold Spring Harb Protoc; 2011 Sep; 2011(9):. PubMed ID: 21880826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-photon imaging of microglia in the mouse cortex in vivo.
    Nimmerjahn A
    Cold Spring Harb Protoc; 2012 May; 2012(5):. PubMed ID: 22550299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precapillary sphincters maintain perfusion in the cerebral cortex.
    Grubb S; Cai C; Hald BO; Khennouf L; Murmu RP; Jensen AGK; Fordsmann J; Zambach S; Lauritzen M
    Nat Commun; 2020 Jan; 11(1):395. PubMed ID: 31959752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removable cranial windows for long-term imaging in awake mice.
    Goldey GJ; Roumis DK; Glickfeld LL; Kerlin AM; Reid RC; Bonin V; Schafer DP; Andermann ML
    Nat Protoc; 2014 Nov; 9(11):2515-2538. PubMed ID: 25275789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcranial chronic optical access to longitudinally measure cerebral blood flow.
    Hoover EM; Crouzet C; Bordas JM; Figueroa Velez DX; Gandhi SP; Choi B; Lodoen MB
    J Neurosci Methods; 2021 Feb; 350():109044. PubMed ID: 33340556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical blood flow assessment with frequency-domain laser Doppler microscopy.
    Atlan M; Forget BC; Boccara AC; Vitalis T; Rancillac A; Dunn AK; Gross M
    J Biomed Opt; 2007; 12(2):024019. PubMed ID: 17477734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optogenetic interrogation of neurovascular coupling in the cerebral cortex of transgenic mice.
    Atry F; Chen RC; Pisaniello J; Brodnick S; Suminski AJ; Novello J; Ness J; Williams JC; Pashaie R
    J Neural Eng; 2018 Oct; 15(5):056033. PubMed ID: 30080158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.