These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 20967197)
1. Neural coding of movement direction in the healthy human brain. Cowper-Smith CD; Lau EY; Helmick CA; Eskes GA; Westwood DA PLoS One; 2010 Oct; 5(10):e13330. PubMed ID: 20967197 [TBL] [Abstract][Full Text] [Related]
2. Effective connectivity of brain networks during self-initiated movement in Parkinson's disease. Wu T; Wang L; Hallett M; Chen Y; Li K; Chan P Neuroimage; 2011 Mar; 55(1):204-15. PubMed ID: 21126588 [TBL] [Abstract][Full Text] [Related]
3. Beta-band oscillations in the supplementary motor cortex are modulated by levodopa and associated with functional activity in the basal ganglia. Chung JW; Burciu RG; Ofori E; Coombes SA; Christou EA; Okun MS; Hess CW; Vaillancourt DE Neuroimage Clin; 2018; 19():559-571. PubMed ID: 29984164 [TBL] [Abstract][Full Text] [Related]
4. Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. Lotze M; Montoya P; Erb M; Hülsmann E; Flor H; Klose U; Birbaumer N; Grodd W J Cogn Neurosci; 1999 Sep; 11(5):491-501. PubMed ID: 10511638 [TBL] [Abstract][Full Text] [Related]
5. Brain areas involved in the control of speed during a motor sequence of the foot: real movement versus mental imagery. Sauvage C; Jissendi P; Seignan S; Manto M; Habas C J Neuroradiol; 2013 Oct; 40(4):267-80. PubMed ID: 23433722 [TBL] [Abstract][Full Text] [Related]
6. Cortical and subcortical areas involved in the regulation of reach movement speed in the human brain: An fMRI study. Shirinbayan SI; Dreyer AM; Rieger JW Hum Brain Mapp; 2019 Jan; 40(1):151-162. PubMed ID: 30251771 [TBL] [Abstract][Full Text] [Related]
7. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task. Rektor I; Sochůrková D; Bocková M Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240 [TBL] [Abstract][Full Text] [Related]
8. Distributed sensitivity for movement amplitude in directionally tuned neuronal populations. Fabbri S; Caramazza A; Lingnau A J Neurophysiol; 2012 Apr; 107(7):1845-56. PubMed ID: 22205646 [TBL] [Abstract][Full Text] [Related]
9. Dissociating visual and motor directional selectivity using visuomotor adaptation. Haar S; Donchin O; Dinstein I J Neurosci; 2015 Apr; 35(17):6813-21. PubMed ID: 25926457 [TBL] [Abstract][Full Text] [Related]
10. Brain areas involved in interlimb coordination: a distributed network. Debaere F; Swinnen SP; Béatse E; Sunaert S; Van Hecke P; Duysens J Neuroimage; 2001 Nov; 14(5):947-58. PubMed ID: 11697927 [TBL] [Abstract][Full Text] [Related]
11. Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task. Bönstrup M; Schulz R; Feldheim J; Hummel FC; Gerloff C Neuroimage; 2016 Jan; 124(Pt A):498-508. PubMed ID: 26334836 [TBL] [Abstract][Full Text] [Related]
12. Changing directions of forthcoming arm movements: neuronal activity in the presupplementary and supplementary motor area of monkey cerebral cortex. Matsuzaka Y; Tanji J J Neurophysiol; 1996 Oct; 76(4):2327-42. PubMed ID: 8899607 [TBL] [Abstract][Full Text] [Related]
13. Temporal feature of BOLD responses varies with temporal patterns of movement. Tomatsu S; Someya Y; Sung YW; Ogawa S; Kakei S Neurosci Res; 2008 Nov; 62(3):160-7. PubMed ID: 18789981 [TBL] [Abstract][Full Text] [Related]
14. Target-, limb-, and context-dependent neural activity in the cingulate and supplementary motor areas of the monkey. Crutcher MD; Russo GS; Ye S; Backus DA Exp Brain Res; 2004 Oct; 158(3):278-88. PubMed ID: 15365665 [TBL] [Abstract][Full Text] [Related]
15. Role of hyperactive cerebellum and motor cortex in Parkinson's disease. Yu H; Sternad D; Corcos DM; Vaillancourt DE Neuroimage; 2007 Mar; 35(1):222-33. PubMed ID: 17223579 [TBL] [Abstract][Full Text] [Related]
16. Brain regions controlling nonsynergistic versus synergistic movement of the digits: a functional magnetic resonance imaging study. Ehrsson HH; Kuhtz-Buschbeck JP; Forssberg H J Neurosci; 2002 Jun; 22(12):5074-80. PubMed ID: 12077202 [TBL] [Abstract][Full Text] [Related]
17. Structure of Population Activity in Primary Motor Cortex for Single Finger Flexion and Extension. Arbuckle SA; Weiler J; Kirk EA; Rice CL; Schieber M; Pruszynski JA; Ejaz N; Diedrichsen J J Neurosci; 2020 Nov; 40(48):9210-9223. PubMed ID: 33087474 [TBL] [Abstract][Full Text] [Related]
18. Functional MRI vs. navigated TMS to optimize M1 seed volume delineation for DTI tractography. A prospective study in patients with brain tumours adjacent to the corticospinal tract. Weiss Lucas C; Tursunova I; Neuschmelting V; Nettekoven C; Oros-Peusquens AM; Stoffels G; Faymonville AM; Jon SN; Langen KJ; Lockau H; Goldbrunner R; Grefkes C Neuroimage Clin; 2017; 13():297-309. PubMed ID: 28050345 [TBL] [Abstract][Full Text] [Related]
19. Functional changes in the activity of cerebellum and frontostriatal regions during externally and internally timed movement in Parkinson's disease. Cerasa A; Hagberg GE; Peppe A; Bianciardi M; Gioia MC; Costa A; Castriota-Scanderbeg A; Caltagirone C; Sabatini U Brain Res Bull; 2006 Dec; 71(1-3):259-69. PubMed ID: 17113955 [TBL] [Abstract][Full Text] [Related]
20. A novel technique for examining human brain activity associated with pedaling using fMRI. Mehta JP; Verber MD; Wieser JA; Schmit BD; Schindler-Ivens SM J Neurosci Methods; 2009 May; 179(2):230-9. PubMed ID: 19428532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]