These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 20968365)

  • 1. Does fundamental-frequency discrimination measure virtual pitch discrimination?
    Micheyl C; Divis K; Wrobleski DM; Oxenham AJ
    J Acoust Soc Am; 2010 Oct; 128(4):1930-42. PubMed ID: 20968365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency discrimination of complex tones with overlapping and non-overlapping harmonics.
    Moore BC; Glasberg BR
    J Acoust Soc Am; 1990 May; 87(5):2163-77. PubMed ID: 2348021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further evidence that fundamental-frequency difference limens measure pitch discrimination.
    Micheyl C; Ryan CM; Oxenham AJ
    J Acoust Soc Am; 2012 May; 131(5):3989-4001. PubMed ID: 22559372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perceptual learning of fundamental frequency discrimination: effects of fundamental frequency, harmonic number, and component phase.
    Miyazono H; Glasberg BR; Moore BC
    J Acoust Soc Am; 2010 Dec; 128(6):3649-57. PubMed ID: 21218897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination of the fundamental frequency of complex tones with fixed and shifting spectral envelopes by normally hearing and hearing-impaired subjects.
    Moore BC; Moore GA
    Hear Res; 2003 Aug; 182(1-2):153-63. PubMed ID: 12948610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pitch perception: dissociating frequency from fundamental-frequency discrimination.
    Oxenham AJ; Micheyl C
    Adv Exp Med Biol; 2013; 787():137-45. PubMed ID: 23716218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of sensorineural hearing loss on temporal coding of harmonic and inharmonic tone complexes in the auditory nerve.
    Kale S; Micheyl C; Heinz MG
    Adv Exp Med Biol; 2013; 787():109-18. PubMed ID: 23716215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implications of within-fiber temporal coding for perceptual studies of F0 discrimination and discrimination of harmonic and inharmonic tone complexes.
    Kale S; Micheyl C; Heinz MG
    J Assoc Res Otolaryngol; 2014 Jun; 15(3):465-82. PubMed ID: 24658856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of harmonic rank on sequential sound segregation.
    Madsen SMK; Dau T; Moore BCJ
    Hear Res; 2018 Sep; 367():161-168. PubMed ID: 30006111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of pitch matching for pure tones and for complex tones with overlapping or nonoverlapping harmonics.
    Moore BC; Glasberg BR; Proctor GM
    J Acoust Soc Am; 1992 Jun; 91(6):3443-50. PubMed ID: 1619120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of temporal fine structure information for the low pitch of high-frequency complex tones.
    Santurette S; Dau T
    J Acoust Soc Am; 2011 Jan; 129(1):282-92. PubMed ID: 21303009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pitch discrimination and phase sensitivity in young and elderly subjects and its relationship to frequency selectivity.
    Moore BC; Peters RW
    J Acoust Soc Am; 1992 May; 91(5):2881-93. PubMed ID: 1629481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of spectral locus and F0 changes on the pitch and timbre of complex tones.
    Singh PG; Hirsh IJ
    J Acoust Soc Am; 1992 Nov; 92(5):2650-61. PubMed ID: 1479128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pitch discrimination of diotic and dichotic tone complexes: harmonic resolvability or harmonic number?
    Bernstein JG; Oxenham AJ
    J Acoust Soc Am; 2003 Jun; 113(6):3323-34. PubMed ID: 12822804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative pitch representations and invariance to timbre.
    McPherson MJ; McDermott JH
    Cognition; 2023 Mar; 232():105327. PubMed ID: 36495710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dominant region for the pitch of complex tones with low fundamental frequencies.
    Jackson HM; Moore BC
    J Acoust Soc Am; 2013 Aug; 134(2):1193-204. PubMed ID: 23927118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of excitation-pattern, temporal-fine-structure, and envelope cues in the discrimination of complex tones.
    Jackson HM; Moore BC
    J Acoust Soc Am; 2014 Mar; 135(3):1356-70. PubMed ID: 24606274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perceived continuity and pitch shifts for complex tones with unresolved harmonics.
    Plack CJ; Watkinson RK
    J Acoust Soc Am; 2010 Oct; 128(4):1922-9. PubMed ID: 20968364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining information across frequency regions in fundamental frequency discrimination.
    Gockel HE; Carlyon RP; Plack CJ
    J Acoust Soc Am; 2010 Apr; 127(4):2466-78. PubMed ID: 20370030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Musical intervals and relative pitch: frequency resolution, not interval resolution, is special.
    McDermott JH; Keebler MV; Micheyl C; Oxenham AJ
    J Acoust Soc Am; 2010 Oct; 128(4):1943-51. PubMed ID: 20968366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.