BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 20968390)

  • 21. Duration-sensitive neurons in the inferior colliculus of horseshoe bats: adaptations for using CF-FM echolocation pulses.
    Luo F; Metzner W; Wu F; Zhang S; Chen Q
    J Neurophysiol; 2008 Jan; 99(1):284-96. PubMed ID: 18003879
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Context-dependent effects of noise on echolocation pulse characteristics in free-tailed bats.
    Tressler J; Smotherman MS
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Oct; 195(10):923-34. PubMed ID: 19672604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensory trait variation in an echolocating bat suggests roles for both selection and plasticity.
    Odendaal LJ; Jacobs DS; Bishop JM
    BMC Evol Biol; 2014 Mar; 14(1):60. PubMed ID: 24674227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pulse-echo interaction in free-flying horseshoe bats, Rhinolophus ferrumequinum nippon.
    Shiori Y; Hiryu S; Watanabe Y; Riquimaroux H; Watanabe Y
    J Acoust Soc Am; 2009 Sep; 126(3):EL80-5. PubMed ID: 19739702
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptive beam-width control of echolocation sounds by CF-FM bats, Rhinolophus ferrumequinum nippon, during prey-capture flight.
    Matsuta N; Hiryu S; Fujioka E; Yamada Y; Riquimaroux H; Watanabe Y
    J Exp Biol; 2013 Apr; 216(Pt 7):1210-8. PubMed ID: 23487269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The allometry of echolocation call frequencies of insectivorous bats: why do some species deviate from the pattern?
    Jacobs DS; Barclay RM; Walker MH
    Oecologia; 2007 Jun; 152(3):583-94. PubMed ID: 17345101
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vocal communication in adult greater horseshoe bats, Rhinolophus ferrumequinum.
    Ma J; Kobayasi K; Zhang S; Metzner W
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 May; 192(5):535-50. PubMed ID: 16418857
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spectral and temporal gating mechanisms enhance the clutter rejection in the echolocating bat, Rhinolophus rouxi.
    Neumann I; Schuller G
    J Comp Physiol A; 1991 Jul; 169(1):109-16. PubMed ID: 1941714
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modelling the prey detection performance of Rhinonicteris aurantia (Chiroptera: Hipposideridae) in different atmospheric conditions discounts the notional role of relative humidity in adaptive evolution.
    Armstrong KN; Kerry LJ
    J Theor Biol; 2011 Jun; 278(1):44-54. PubMed ID: 21376732
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Female mate choice can drive the evolution of high frequency echolocation in bats: a case study with Rhinolophus mehelyi.
    Puechmaille SJ; Borissov IM; Zsebok S; Allegrini B; Hizem M; Kuenzel S; Schuchmann M; Teeling EC; Siemers BM
    PLoS One; 2014; 9(7):e103452. PubMed ID: 25075972
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Echolocation call intensity and directionality in flying short-tailed fruit bats, Carollia perspicillata (Phyllostomidae).
    Brinkløv S; Jakobsen L; Ratcliffe JM; Kalko EK; Surlykke A
    J Acoust Soc Am; 2011 Jan; 129(1):427-35. PubMed ID: 21303022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Frequency modulation patterns in the echolocation signals of two vespertilionid bats.
    Boonman A; Schnitzler HU
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jan; 191(1):13-21. PubMed ID: 15568143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acoustic identification of eight species of bat (mammalia: chiroptera) inhabiting forests of southern hokkaido, Japan: potential for conservation monitoring.
    Fukui D; Agetsuma N; Hill DA
    Zoolog Sci; 2004 Sep; 21(9):947-55. PubMed ID: 15459453
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomechanical control of vocal plasticity in an echolocating bat.
    Luo J; Wiegrebe L
    J Exp Biol; 2016 Mar; 219(Pt 6):878-86. PubMed ID: 26823102
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The communicative potential of bat echolocation pulses.
    Jones G; Siemers BM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 May; 197(5):447-57. PubMed ID: 20686895
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Echolocation call intensity in the aerial hawking bat Eptesicus bottae (Vespertilionidae) studied using stereo videogrammetry.
    Holderied MW; Korine C; Fenton MB; Parsons S; Robson S; Jones G
    J Exp Biol; 2005 Apr; 208(Pt 7):1321-7. PubMed ID: 15781892
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensory ecology of predator-prey interactions: responses of the AN2 interneuron in the field cricket, Teleogryllus oceanicus to the echolocation calls of sympatric bats.
    Fullard JH; Ratcliffe JM; Guignion C
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jul; 191(7):605-18. PubMed ID: 15886992
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Echolocation and passive listening by foraging mouse-eared bats Myotis myotis and M. blythii.
    Russo D; Jones G; Arlettaz R
    J Exp Biol; 2007 Jan; 210(Pt 1):166-76. PubMed ID: 17170159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bats increase vocal amplitude and decrease vocal complexity to mitigate noise interference during social communication.
    Jiang T; Guo X; Lin A; Wu H; Sun C; Feng J; Kanwal JS
    Anim Cogn; 2019 Mar; 22(2):199-212. PubMed ID: 30631993
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of echolocation pulses by neurons of the nucleus ambiguus in the rufous horseshoe bat, Rhinolophus rouxi. I. Single unit recordings in the ventral motor nucleus of the laryngeal nerves in spontaneously vocalizing bats.
    Rübsamen R; Betz M
    J Comp Physiol A; 1986 Nov; 159(5):675-87. PubMed ID: 3543318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.