These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 2096843)

  • 1. Stimulation of ammonification and nitrification in soils by the insecticides monocrotophos and quinalphos.
    Rangaswamy V; Venkateswarlu K
    Biomed Environ Sci; 1990 Dec; 3(4):391-6. PubMed ID: 2096843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of monocrotophos and quinalphos on soil population and nitrogen-fixing activity of Azospirillum sp.
    Rangaswamy V; Charyulu PB; Venkateswarlu K
    Biomed Environ Sci; 1989 Dec; 2(4):305-11. PubMed ID: 2513838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of two insecticides, chlorpyrifos and quinalphos, on arginine ammonification and mineralizable nitrogen in two tropical soil types.
    Menon P; Gopal M; Prasad R
    J Agric Food Chem; 2004 Dec; 52(24):7370-6. PubMed ID: 15563221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activities of cellulase and amylase in soils as influenced by insecticide interactions.
    Gundi VA; Viswanath B; Chandra MS; Kumar VN; Reddy BR
    Ecotoxicol Environ Saf; 2007 Oct; 68(2):278-85. PubMed ID: 17276510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate-solubility and phosphatase activity in Gangetic alluvial soil as influenced by organophosphate insecticide residues.
    Majumder SP; Das AC
    Ecotoxicol Environ Saf; 2016 Apr; 126():56-61. PubMed ID: 26720809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of monocrotophos and quinalphos with Anabaena torulosa isolated from rice soil.
    Bhaskar M; Sreenivasulu C; Venkateswarlu K
    Biochem Int; 1992 Dec; 28(5):767-73. PubMed ID: 1283819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbamate and organophosphate resistance in cotton pests in India, 1995 to 1999.
    Kranthi KR; Jadhav DR; Wanjari RR; Ali SS; Russell D
    Bull Entomol Res; 2001 Feb; 91(1):37-46. PubMed ID: 11228586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of monocrotophos and quinalphos by algae isolated from soil.
    Megharaj M; Venkateswarlu K; Rao AS
    Bull Environ Contam Toxicol; 1987 Aug; 39(2):251-6. PubMed ID: 3663978
    [No Abstract]   [Full Text] [Related]  

  • 9. Interaction effects of insecticides on microbial populations and dehydrogenase activity in a black clay soil.
    Gundi VA; Narasimha G; Reddy BR
    J Environ Sci Health B; 2005; 40(2):269-83. PubMed ID: 15825682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extent and causes of 3D spatial variations in potential N mineralization and the risk of ammonium and nitrate leaching from an N-impacted permanent grassland near York, UK.
    Riaz M; Mian IA; Cresser MS
    Environ Pollut; 2008 Dec; 156(3):1075-82. PubMed ID: 18514372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissipation study of Quinalphos (25 EC) in/on brinjal and soil.
    Pathan AR; Parihar NS; Sharma BN
    Bull Environ Contam Toxicol; 2012 Jun; 88(6):894-6. PubMed ID: 22437566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of insecticides alone and in combination with fungicides on nitrification and phosphatase activity in two groundnut (Arachis hypogeae L.) soils.
    Srinivasulu M; Jaffer Mohiddin G; Subramanyam K; Rangaswamy V
    Environ Geochem Health; 2012 Jun; 34(3):365-74. PubMed ID: 21773724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissipation and leaching of (14)C-monocrotophos in Soil Columns under subtropical climate.
    Vig K; Singh DK; Agarwal HC
    J Environ Sci Health B; 2006; 41(4):377-83. PubMed ID: 16753957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Inhibitory effect of pyrazole compound DL-1 on soil nitrification: a preliminary study].
    Sun Z; Liang W; Wu Z; Zuo X; Shi Y
    Ying Yong Sheng Tai Xue Bao; 2006 Feb; 17(2):201-4. PubMed ID: 16706038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Community structure of ammonia-oxidizing archaea and ammonia-oxidizing bacteria in soil treated with the insecticide imidacloprid.
    Cycoń M; Piotrowska-Seget Z
    Biomed Res Int; 2015; 2015():582938. PubMed ID: 25705674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil dehydrogenase, phosphomonoesterase and arginine deaminase activities in an insecticide treated groundnut (Arachis hypogaea L.) field.
    Pandey S; Singh DK
    Chemosphere; 2006 May; 63(5):869-80. PubMed ID: 16194560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of repeated pesticide applications on the binding and release of methyl 14C-monocrotophos and U-ring labelled 14C-carbaryl to soil matrices under field conditions.
    Zayed SM; Farghaly M; Mahdy F; Soliman SM
    J Environ Sci Health B; 2008 Sep; 43(7):595-604. PubMed ID: 18803114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autotrophic ammonia-oxidizing bacteria contribute minimally to nitrification in a nitrogen-impacted forested ecosystem.
    Jordan FL; Cantera JJ; Fenn ME; Stein LY
    Appl Environ Microbiol; 2005 Jan; 71(1):197-206. PubMed ID: 15640188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical and microbial soil functioning after application of the insecticide imidacloprid.
    Cycoń M; Piotrowska-Seget Z
    J Environ Sci (China); 2015 Jan; 27():147-58. PubMed ID: 25597673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency of urease and nitrification inhibitors in reducing ammonia volatilization from diverse nitrogen fertilizers applied to different soil types and wheat straw mulching.
    San Francisco S; Urrutia O; Martin V; Peristeropoulos A; Garcia-Mina JM
    J Sci Food Agric; 2011 Jul; 91(9):1569-75. PubMed ID: 21656770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.