These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 20969)

  • 21. Photoreactivity of histidyl residues in subtilisins Novo and DY. Photooxidation of subtilisins.
    Genov N; Idakieva K
    Int J Pept Protein Res; 1987 Mar; 29(3):368-73. PubMed ID: 3298095
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimation of tryptophyl and tyrosyl exposure in tryptophan-rich proteins by ultraviolet difference spectrophotometry. Lysozyme and Chymotrypsinogen.
    Izumi T; Inoue H
    J Biochem; 1976 Jun; 79(6):1309-21. PubMed ID: 8442
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proton magnetic resonance study of Streptomyces subtilisin inhibitor. pH titration and assignments of individual tyrosyl resonances.
    Fujii S; Akasaka K; Hatano H
    Biochemistry; 1981 Feb; 20(3):518-23. PubMed ID: 7011365
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Circular dichroic and perturbation spectra of aromatic chromophores in rabbit tropomyosin. Topography of tyrosine residues.
    Nagy B
    J Biol Chem; 1977 Jul; 252(13):4557-63. PubMed ID: 17600
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of pH and urea on the conformational properties of subtilisin DY.
    Ricchelli F; Jori G; Filippi B; Boteva R; Shopova M; Genov N
    Biochem J; 1982 Nov; 207(2):201-5. PubMed ID: 6818946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proton magnetic resonance studies of the states of ionization of histidines in native and modified subtilisins.
    Jordan F; Polgar L; Tous G
    Biochemistry; 1985 Dec; 24(26):7711-7. PubMed ID: 3912007
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectrophotometric titration of phenolic groups of pepsin.
    Ahmad F; McPhie P
    Biochim Biophys Acta; 1978 Dec; 537(2):247-54. PubMed ID: 31919
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Near-ultraviolet tyrosyl circular dichroism of pig insulin monomers, dimers, and hexamers. Dipole-dipole coupling calculations in the monopole approximation.
    Strickland EH; Mercola D
    Biochemistry; 1976 Aug; 15(17):3875-84. PubMed ID: 986169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical, photochemical and spectroscopic characterization of an alkaline proteinase from Bacillus subtilis variant DY.
    Genov N; Shopova M; Boteva R; Jori G; Ricchelli F
    Biochem J; 1982 Nov; 207(2):193-200. PubMed ID: 6818945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A study on the positive ellipticity in the circular dichroism of ribonuclease A.
    Almog R
    Biophys Chem; 1983 Nov; 18(4):391-5. PubMed ID: 6661502
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Double-headed protease inhibitors from black-eyed peas. II. Structural studies by optical absorption and circular dichroism.
    Gennis LS; Cantor CR
    J Biol Chem; 1976 Feb; 251(3):741-6. PubMed ID: 2593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the activity loss of hydrolases in organic solvents: II. a mechanistic study of subtilisin Carlsberg.
    Castillo B; Bansal V; Ganesan A; Halling P; Secundo F; Ferrer A; Griebenow K; Barletta G
    BMC Biotechnol; 2006 Dec; 6():51. PubMed ID: 17187678
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A study of the unfolding of the inhibited subtilisin in guanidine hydrochloride.
    Contaxis CC; McBride-Warren PA; Epand RM
    Int J Pept Protein Res; 1975; 7(2):135-42. PubMed ID: 237844
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Individual tyrosine side-chain contributions to circular dichroism of ribonuclease.
    Woody AY; Woody RW
    Biopolymers; 2003; 72(6):500-13. PubMed ID: 14587072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57.
    Dyson HJ; Jeng MF; Tennant LL; Slaby I; Lindell M; Cui DS; Kuprin S; Holmgren A
    Biochemistry; 1997 Mar; 36(9):2622-36. PubMed ID: 9054569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluorescence of histones H1. A tyrosinate-like fluorescence emission in Ceratitis capitata H1 at neutral pH values.
    Jordano J; Barbero JL; Montero F; Franco L
    J Biol Chem; 1983 Jan; 258(1):315-20. PubMed ID: 6848503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [A quantitative method for evaluating the structure and conformational stability of proteins by second derivative UV-spectroscopy].
    Shevchenko AA; Kost OA; Kazanskaia NF
    Bioorg Khim; 1994 Mar; 20(3):263-7. PubMed ID: 8166752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reductive alkylation of lysine residues in subtilisin DY.
    Lilova A; Kleinschmidt T; Nedkov P
    Biol Chem Hoppe Seyler; 1987 Nov; 368(11):1479-87. PubMed ID: 3124865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of the interaction between ionizable groups in the folding of bovine alpha-lactalbumin.
    Kuwajima K; Ogawa Y; Sugai S
    J Biochem; 1981 Mar; 89(3):759-70. PubMed ID: 7287638
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies on the state of tyrosyl residues in a ribonuclease from seminal vesicles.
    Irie M; Suito F
    J Biochem; 1975 May; 77(5):1075-84. PubMed ID: 239931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.