These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 20969365)
1. A critical test of bivelocity hydrodynamics for mixtures. Brenner H J Chem Phys; 2010 Oct; 133(15):154102. PubMed ID: 20969365 [TBL] [Abstract][Full Text] [Related]
2. Circumstantial evidence in support of bivelocity hydrodynamic theory for mixtures. Brenner H J Chem Phys; 2010 Feb; 132(5):054106. PubMed ID: 20136304 [TBL] [Abstract][Full Text] [Related]
3. Conduction-only transport phenomena in compressible bivelocity fluids: diffuse interfaces and Korteweg stresses. Brenner H Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043020. PubMed ID: 24827345 [TBL] [Abstract][Full Text] [Related]
4. Fluid mechanics in fluids at rest. Brenner H Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016307. PubMed ID: 23005525 [TBL] [Abstract][Full Text] [Related]
5. Is the tracer velocity of a fluid continuum equal to its mass velocity? Brenner H Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061201. PubMed ID: 15697343 [TBL] [Abstract][Full Text] [Related]
6. Molecular theory of barycentric velocity: monatomic fluids. Eu BC J Chem Phys; 2008 May; 128(20):204507. PubMed ID: 18513032 [TBL] [Abstract][Full Text] [Related]
7. Molecular representation of molar domain (volume), evolution equations, and linear constitutive relations for volume transport. Eu BC J Chem Phys; 2008 Sep; 129(9):094502. PubMed ID: 19044872 [TBL] [Abstract][Full Text] [Related]
8. Nonisothermal Brownian motion: Thermophoresis as the macroscopic manifestation of thermally biased molecular motion. Brenner H Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061201. PubMed ID: 16485937 [TBL] [Abstract][Full Text] [Related]
9. Many-fluid Onsager density functional theories for orientational ordering in mixtures of anisotropic hard-body fluids. Malijevský A; Jackson G; Varga S J Chem Phys; 2008 Oct; 129(14):144504. PubMed ID: 19045155 [TBL] [Abstract][Full Text] [Related]
10. Proposal of a critical test of the Navier-Stokes-Fourier paradigm for compressible fluid continua. Brenner H Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013014. PubMed ID: 23410433 [TBL] [Abstract][Full Text] [Related]
11. Phoresis in fluids. Brenner H Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066317. PubMed ID: 22304200 [TBL] [Abstract][Full Text] [Related]
12. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
13. Irreversible thermodynamics of multicomponent fluids and its statistical mechanics basis. Snider RF Phys Rev E; 2021 Mar; 103(3-1):032121. PubMed ID: 33862760 [TBL] [Abstract][Full Text] [Related]
14. Global fluid phase equilibria and critical phenomena of selected mixtures using the crossover soft-SAFT equation. Llovell F; Vega LF J Phys Chem B; 2006 Jan; 110(3):1350-62. PubMed ID: 16471685 [TBL] [Abstract][Full Text] [Related]
15. Excess around a central molecule with application to binary mixtures. Shulgin IL; Ruckenstein E Phys Chem Chem Phys; 2008 Feb; 10(8):1097-105. PubMed ID: 18270610 [TBL] [Abstract][Full Text] [Related]
16. The Kirkwood-Buff theory of solutions and the local composition of liquid mixtures. Shulgin IL; Ruckenstein E J Phys Chem B; 2006 Jun; 110(25):12707-13. PubMed ID: 16800605 [TBL] [Abstract][Full Text] [Related]
17. Volume transport and generalized hydrodynamic equations for monatomic fluids. Eu BC J Chem Phys; 2008 Oct; 129(13):134509. PubMed ID: 19045107 [TBL] [Abstract][Full Text] [Related]
18. Kirkwood correlation factors in liquid mixtures from an extended Onsager-Kirkwood-Fröhlich equation. Reis JC; Iglesias TP Phys Chem Chem Phys; 2011 Jun; 13(22):10670-80. PubMed ID: 21544282 [TBL] [Abstract][Full Text] [Related]
19. Concentration fluctuations in non-isothermal reaction-diffusion systems. II. The nonlinear case. Bedeaux D; Ortiz de Zárate JM; Pagonabarraga I; Sengers JV; Kjelstrup S J Chem Phys; 2011 Sep; 135(12):124516. PubMed ID: 21974544 [TBL] [Abstract][Full Text] [Related]
20. A global investigation of phase equilibria using the perturbed-chain statistical-associating-fluid-theory approach. Yelash L; Müller M; Paul W; Binder K J Chem Phys; 2005 Jul; 123(1):014908. PubMed ID: 16035870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]