These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 20969481)

  • 21. Mycobacterium tuberculosis vitamin K epoxide reductase homologue supports vitamin K-dependent carboxylation in mammalian cells.
    Tie JK; Jin DY; Stafford DW
    Antioxid Redox Signal; 2012 Feb; 16(4):329-38. PubMed ID: 21939388
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The conversion of vitamin K epoxide to vitamin K quinone and vitamin K quinone to vitamin K hydroquinone uses the same active site cysteines.
    Jin DY; Tie JK; Stafford DW
    Biochemistry; 2007 Jun; 46(24):7279-83. PubMed ID: 17523679
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA.
    Guilhot C; Jander G; Martin NL; Beckwith J
    Proc Natl Acad Sci U S A; 1995 Oct; 92(21):9895-9. PubMed ID: 7568240
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The membrane topology of vitamin K epoxide reductase is conserved between human isoforms and the bacterial enzyme.
    Cao Z; van Lith M; Mitchell LJ; Pringle MA; Inaba K; Bulleid NJ
    Biochem J; 2016 Apr; 473(7):851-8. PubMed ID: 26772871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of Pseudomonas aeruginosa and Mycobacterium tuberculosis disulfide bond forming enzymes.
    Landeta C; McPartland L; Tran NQ; Meehan BM; Zhang Y; Tanweer Z; Wakabayashi S; Rock J; Kim T; Balasubramanian D; Audette R; Toosky M; Pinkham J; Rubin EJ; Lory S; Pier G; Boyd D; Beckwith J
    Mol Microbiol; 2019 Apr; 111(4):918-937. PubMed ID: 30556355
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Key amino acids of arabidopsis VKOR in the activity of phylloquinone reduction and disulfide bond formation.
    Yang XJ; Cui HR; Yu ZB; Du JJ; Xu JN; Wang XY
    Protein Pept Lett; 2015; 22(1):81-6. PubMed ID: 25267254
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Disulfide Bond-forming Machine Is Linked to the Sortase-mediated Pilus Assembly Pathway in the Gram-positive Bacterium Actinomyces oris.
    Reardon-Robinson ME; Osipiuk J; Chang C; Wu C; Jooya N; Joachimiak A; Das A; Ton-That H
    J Biol Chem; 2015 Aug; 290(35):21393-405. PubMed ID: 26170452
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vitamin K epoxide reductase contributes to protein disulfide formation and redox homeostasis within the endoplasmic reticulum.
    Rutkevich LA; Williams DB
    Mol Biol Cell; 2012 Jun; 23(11):2017-27. PubMed ID: 22496424
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A quantum chemical study of the mechanism of action of Vitamin K epoxide reductase (VKOR) II. Transition states.
    Davis CH; Deerfield D; Wymore T; Stafford DW; Pedersen LG
    J Mol Graph Model; 2007 Sep; 26(2):401-8. PubMed ID: 17182266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vitamin K epoxide reductase complex subunit 1 (VKORC1): the key protein of the vitamin K cycle.
    Oldenburg J; Bevans CG; Müller CR; Watzka M
    Antioxid Redox Signal; 2006; 8(3-4):347-53. PubMed ID: 16677080
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vitamin k epoxide reductase: a protein involved in angiogenesis.
    Wang Y; Zhen Y; Shi Y; Chen J; Zhang C; Wang X; Yang X; Zheng Y; Liu Y; Hui R
    Mol Cancer Res; 2005 Jun; 3(6):317-23. PubMed ID: 15972850
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conserved loop cysteines of vitamin K epoxide reductase complex subunit 1-like 1 (VKORC1L1) are involved in its active site regeneration.
    Tie JK; Jin DY; Stafford DW
    J Biol Chem; 2014 Mar; 289(13):9396-407. PubMed ID: 24532791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Disulfide bond formation by exported glutaredoxin indicates glutathione's presence in the E. coli periplasm.
    Eser M; Masip L; Kadokura H; Georgiou G; Beckwith J
    Proc Natl Acad Sci U S A; 2009 Feb; 106(5):1572-7. PubMed ID: 19164554
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Disulfide bond formation in prokaryotes.
    Landeta C; Boyd D; Beckwith J
    Nat Microbiol; 2018 Mar; 3(3):270-280. PubMed ID: 29463925
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane.
    Cain D; Hutson SM; Wallin R
    J Biol Chem; 1997 Nov; 272(46):29068-75. PubMed ID: 9360981
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Warfarin and vitamin K epoxide reductase: a molecular accounting for observed inhibition.
    Wu S; Chen X; Jin DY; Stafford DW; Pedersen LG; Tie JK
    Blood; 2018 Aug; 132(6):647-657. PubMed ID: 29743176
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Roles of cysteine residues of DsbB in its activity to reoxidize DsbA, the protein disulphide bond catalyst of Escherichia coli.
    Kishigami S; Ito K
    Genes Cells; 1996 Feb; 1(2):201-8. PubMed ID: 9140064
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DsbB catalyzes disulfide bond formation de novo.
    Regeimbal J; Bardwell JC
    J Biol Chem; 2002 Sep; 277(36):32706-13. PubMed ID: 12072444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural features determining the vitamin K epoxide reduction activity in the VKOR family of membrane oxidoreductases.
    Shen G; Li C; Cao Q; Megta AK; Li S; Gao M; Liu H; Shen Y; Chen Y; Yu H; Li S; Li W
    FEBS J; 2022 Aug; 289(15):4564-4579. PubMed ID: 35113495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering of a recombinant vitamin K-dependent gamma-carboxylation system with enhanced gamma-carboxyglutamic acid forming capacity: evidence for a functional CXXC redox center in the system.
    Wajih N; Sane DC; Hutson SM; Wallin R
    J Biol Chem; 2005 Mar; 280(11):10540-7. PubMed ID: 15640149
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.