These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
406 related articles for article (PubMed ID: 20969484)
1. Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Hall A; Nelson K; Poole LB; Karplus PA Antioxid Redox Signal; 2011 Aug; 15(3):795-815. PubMed ID: 20969484 [TBL] [Abstract][Full Text] [Related]
2. Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H₂O₂, and protein chaperones. Rhee SG; Woo HA Antioxid Redox Signal; 2011 Aug; 15(3):781-94. PubMed ID: 20919930 [TBL] [Abstract][Full Text] [Related]
3. Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite. Trujillo M; Ferrer-Sueta G; Thomson L; Flohé L; Radi R Subcell Biochem; 2007; 44():83-113. PubMed ID: 18084891 [TBL] [Abstract][Full Text] [Related]
4. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Wood ZA; Poole LB; Karplus PA Science; 2003 Apr; 300(5619):650-3. PubMed ID: 12714747 [TBL] [Abstract][Full Text] [Related]
5. A peroxiredoxin cDNA from Taiwanofungus camphorata: role of Cys31 in dimerization. Huang CY; Chen YT; Wen L; Sheu DC; Lin CT Mol Biol Rep; 2014 Jan; 41(1):155-64. PubMed ID: 24194195 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure of an archaeal peroxiredoxin from the aerobic hyperthermophilic crenarchaeon Aeropyrum pernix K1. Mizohata E; Sakai H; Fusatomi E; Terada T; Murayama K; Shirouzu M; Yokoyama S J Mol Biol; 2005 Nov; 354(2):317-29. PubMed ID: 16214169 [TBL] [Abstract][Full Text] [Related]
7. Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization. Hall A; Parsonage D; Poole LB; Karplus PA J Mol Biol; 2010 Sep; 402(1):194-209. PubMed ID: 20643143 [TBL] [Abstract][Full Text] [Related]
8. The catalytic mechanism of peroxiredoxins. Poole LB Subcell Biochem; 2007; 44():61-81. PubMed ID: 18084890 [TBL] [Abstract][Full Text] [Related]
9. Active site C Kamariah N; Eisenhaber B; Eisenhaber F; Grüber G Free Radic Biol Med; 2018 Apr; 118():59-70. PubMed ID: 29474868 [TBL] [Abstract][Full Text] [Related]
10. Structural properties of the peroxiredoxin AhpC2 from the hyperthermophilic eubacterium Aquifex aeolicus. Liu W; Liu A; Gao H; Wang Q; Wang L; Warkentin E; Rao Z; Michel H; Peng G Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2797-2805. PubMed ID: 30251668 [TBL] [Abstract][Full Text] [Related]
11. Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine. Peskin AV; Dickerhof N; Poynton RA; Paton LN; Pace PE; Hampton MB; Winterbourn CC J Biol Chem; 2013 May; 288(20):14170-14177. PubMed ID: 23543738 [TBL] [Abstract][Full Text] [Related]
12. The bicarbonate/carbon dioxide pair increases hydrogen peroxide-mediated hyperoxidation of human peroxiredoxin 1. Truzzi DR; Coelho FR; Paviani V; Alves SV; Netto LES; Augusto O J Biol Chem; 2019 Sep; 294(38):14055-14067. PubMed ID: 31366734 [TBL] [Abstract][Full Text] [Related]
14. Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols. Zeida A; Trujillo M; Ferrer-Sueta G; Denicola A; Estrin DA; Radi R Chem Rev; 2019 Oct; 119(19):10829-10855. PubMed ID: 31498605 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure of reduced and of oxidized peroxiredoxin IV enzyme reveals a stable oxidized decamer and a non-disulfide-bonded intermediate in the catalytic cycle. Cao Z; Tavender TJ; Roszak AW; Cogdell RJ; Bulleid NJ J Biol Chem; 2011 Dec; 286(49):42257-42266. PubMed ID: 21994946 [TBL] [Abstract][Full Text] [Related]
16. Structural survey of the peroxiredoxins. Karplus PA; Hall A Subcell Biochem; 2007; 44():41-60. PubMed ID: 18084889 [TBL] [Abstract][Full Text] [Related]
17. Experimentally Dissecting the Origins of Peroxiredoxin Catalysis. Nelson KJ; Perkins A; Van Swearingen AED; Hartman S; Brereton AE; Parsonage D; Salsbury FR; Karplus PA; Poole LB Antioxid Redox Signal; 2018 Mar; 28(7):521-536. PubMed ID: 28375740 [TBL] [Abstract][Full Text] [Related]
18. Structure of TSA2 reveals novel features of the active-site loop of peroxiredoxins. Nielsen MH; Kidmose RT; Jenner LB Acta Crystallogr D Struct Biol; 2016 Jan; 72(Pt 1):158-67. PubMed ID: 26894543 [TBL] [Abstract][Full Text] [Related]
19. The 1-Cys peroxiredoxin, a regulator of seed dormancy, functions as a molecular chaperone under oxidative stress conditions. Kim SY; Paeng SK; Nawkar GM; Maibam P; Lee ES; Kim KS; Lee DH; Park DJ; Kang SB; Kim MR; Lee JH; Kim YH; Kim WY; Kang CH Plant Sci; 2011 Aug; 181(2):119-24. PubMed ID: 21683876 [TBL] [Abstract][Full Text] [Related]
20. Distinct characteristics of two 2-Cys peroxiredoxins of Vibrio vulnificus suggesting differential roles in detoxifying oxidative stress. Bang YJ; Oh MH; Choi SH J Biol Chem; 2012 Dec; 287(51):42516-24. PubMed ID: 23095744 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]